北京师范大学地表过程与资源生态国家重点实验室
  中文|English  
 
您的位置: 首页» 实验室新闻» 室内研究进展» 地表系统模型与模拟
The Tropical Intraseasonal Oscillation in SAMIL Coupled and Uncoupled General Circulation Models
发布时间: 2012-05-23  

YANG Jing1 (杨静), BAO Qing2 (包庆), WANG Xiaocong2 (王晓聪), ZHOU Tianjun2 (周天军)
1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875;
2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
 
Abstract: Simulations of tropical intraseasonal oscillation (TISO) in SAMIL, the Spectral Atmospheric Model from the Institute of Atmospheric Physics (IAP) State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG) coupled and uncoupled general circulation models were comprehensively evaluated in this study. Compared to the uncoupled model, the atmosphere-ocean coupled model improved the TISO simulation in the following aspects: (1) the spectral intensity for the 30-80-day peak eastward periods was more realistic; (2) the eastward propagation signals over western Pacific were stronger; and (3) the variance distribution and stronger signals of Kelvin waves and mixed Rossby gravity waves were more realistic. Better performance in the coupled run was assumed to be associated with a better mean state and a more realistic relationship between precipitation and SST. In both the coupled and uncoupled runs, the unrealistic simulation of the eastward propagation over the equatorial Indian Ocean might have been associated with the biases of the precipitation mean state over the Indian Ocean, and the unrealistic split of maximum TISO precipitation variance over the Pacific might have corresponded to the exaggeration of the double Intertropical Convergence Zone (ITCZ) structure in precipitation mean state. However, whether a better mean state leads to better TISO activity remains questionable. Notably, the northward propagation over the Indian Ocean during summer was not improved in the mean lead-lag correlation analysis, but case studies have shown some strong cases to yield remarkably realistic northward propagation in coupled runs.
 
Keywords: tropical intraseasonal oscillation, atmosphere-ocean interaction, mean state, northward propagation, simulation
 
Published in Advances in Atmospheric Sciences. 2012, 29(3): 529-543.

浏览次数: