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Abstract As a new generation of polar‐orbiting satellites, NPP VIIRS (National Polar‐orbiting
Partnership Visible Infrared Imaging Radiometer Suite) provides important supports for the studies of
local and global scale climate change, environmental monitoring, and radiant energy balance. This paper
proposed an improved deep blue aerosol retrieval algorithm over complex regions based on NPP VIIRS
observations. Two improvements were proposed and implemented to the traditional aerosol optical depth
(AOD) retrieval algorithm in order to improve the retrieval accuracy, including the construction of the
surface reflectance conversion model and aerosol optical parameter acquisition. The retrieval results were
extensively evaluated. First, the accuracy of the algorithm was evaluated using AErosol RObotic NETwork
ground‐based observations, including conditions over different underlying surfaces, different seasons, and
different AOD values. Then, the cross validation was carried out between our AOD retrievals and NPP VIIRS
aerosol products. The verification results show that our AOD retrievals agree very well with the AErosol
RObotic NETwork AOD with coefficient of determination (R2) ~ 0.85. The improved deep blue algorithm
performs well overall under different surface conditions and seasons, while the quality of performance
gradually decreases with the increase of AOD. Moreover, the improved algorithm is robust with less bias,
root‐mean‐square error, and relative mean bias in the AOD retrievals and can provide more detailed aerosol
information compared with the NPP VIIRS aerosol products. These results suggest that the improved deep
blue algorithm can obtain high‐precision AOD information, providing better data basis for related
researches on air pollution and climate change.

1. Introduction

As an important component of atmosphere, aerosol can change Earth‐Atmosphere system radiant energy
balance from local to global scales through different processes which include direct effects (Collier &
Zhang, 2009; Ghan & Easter, 2006; Quaas et al., 2004; Rap et al., 2013; Yang et al., 2018, 2016; Zhang
et al., 2015), indirect effect (Albrecht, 1989; Chylek et al., 2016; Garrett & Zhao, 2006; Liepert &
Lohmann, 2001; Lohmann & Feichter, 2005; Rap et al., 2013; Twomey, 1977; Zhao & Garrett, 2015), and
semidirect effect (Bauer & Menon, 2012; Johnson, 2005; Koren et al., 2004; Nabat et al., 2015; Randles
et al., 2009; Schultze & Rockel, 2018). In particular, aerosol can act as cloud condensation nuclei, which will
increase the cloud droplet number concentration and increase cloud albedo (Cruz & Pandis, 1997;
Furukawa et al., 2010; Quinn et al., 2017; Spracklen et al., 2011; Twomey, 1977; Zhao et al., 2012; Zhao
et al., 2018). By competing for limited water among cloud droplets, increased aerosols could further
decrease cloud droplet effective radius (Garrett et al., 2004; Qiu et al., 2017; Wang et al., 2015; Yang et al.,
2019; Zhao et al., 2019). Moreover, associated with the increase of cloud condensation nuclei and decrease
of cloud droplet effective radius, the lifetime of cloud could also change (Albrecht, 1989; Quinn et al.,
2017; Xue et al., 2008).

Aerosols in the atmosphere are from natural and anthropogenic sources (Parsiani & Mèndez, 2008; Skupin
et al., 2016), and they vary greatly in space and time (Guo et al., 2017; Kanniah et al., 2014). In arid and semi-
arid regions, low vegetation cover over the land makes dust and sand sulfate particles enter the air to form
dust aerosol under the action of wind. The fossil fuel burning and other human activities have intensified
pollution in urban regions, making urban aerosol research become one focus of the science community
and human society (de Almeida Castanho et al., 2008; Jing et al., 2015; Salma et al., 2016; Shi et al., 2018;
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Yan et al., 2017). Therefore, a comprehensive understanding of aerosol loadings is essential and critical to
climate change, Earth's radiation budget and human health researches (Carmichael et al., 2009; Coakley
et al., 1983; Garrett & Zhao, 2006; Ji et al., 2016; Jimenez‐Guerrero et al., 2012; Konyukh et al., 1979;
Morino et al., 2017; Rind et al., 1992). A key optical parameter of aerosol, aerosol optical depth (AOD),
has become an important indicator for measuring aerosol pollution, which is defined as the integrated light
extinction over vertical path through the atmosphere.

Satellite remote sensing, as the most direct and effective way to capture the spatial distributions and tem-
poral variations of aerosols over large regions, has been widely used for researches at the local and global
scales compared with ground‐based Sun photometers (Garcia et al., 2016; Kahn, 2013; Kokhanovsky
et al., 2007; Li et al., 2005; Noh et al., 2009; Qin et al., 2016; Sun et al., 2016; Veefkind et al., 1999; Wang,
Chen, et al., 2017; Zheng et al., 2017). During past 20 years, a series of sensors have been launched and used
in aerosol related researches over land and ocean, such as National Oceanic and Atmospheric
Administration Advanced Very High Resolution Radiometer (Geogdzhayev et al., 2004; Hsu et al., 2017),
Multi‐angle Imaging SpectroRadiometer (Diner et al., 2005; Limbacher & Kahn, 2017), Advanced Along
Track Scanning Radiometer (Grey et al., 2006; Guo et al., 2009; Mei et al., 2013; Xue et al., 2009),
Polarization and Directionality of the Earth's Reflectance (Deuze et al., 2001), Sea‐Viewing Wide Field‐Of‐
View Sensor (Melin et al., 2007; Sayer et al., 2012), Landsat Operational Land Imager (Tian et al., 2018),
MODIS (MODerate‐Resolution Imaging Spectroradiometer; Levy et al., 2007), VIIRS (Visible Infrared
Imaging Radiometer Suite; Jackson et al., 2013; Su et al., 2015; Zhang et al., 2016), and Chinese
FengYun Medium Resolution Spectral Imager (Han et al., 2015; Tong et al., 2011). One of the main
challenges for the AOD retrieval using satellites is to isolate aerosol particle scattering contributions from
satellite recorded signals, which is the superposition of atmospheric path reflectance including atmo-
spheric molecules and aerosol matters as well as surface reflectance signals (Wei et al., 2017). Aerosol opti-
cal properties are also key parameters to accurate retrieval of near surface particulate matter, which varies
greatly in space and time (Li et al., 2009; Zheng et al., 2017). To meet the increasing demands, a series of
satellite aerosol remote sensing retrieval methods and algorithms have been proposed using satellite visi-
ble and infrared data.

Based on the spectral radiation measurements from satellite, there are generally four types of AOD retrieval
algorithms which include the structure function algorithm (Holben et al., 1992; Sun, 2006; Tanre et al.,
1988), the dark target (DT) algorithm (Kaufman, Tanre, et al., 1997), the improved DT algorithm (Levy
et al., 2007), and the deep blue (DB) algorithm (Hsu et al., 2004). The structure function algorithm derives
the AOD over bright surfaces based on the blurring effect of image, which caused by aerosol particle scatter-
ing, with the assumption that the land surface reflectance (LSR) and the intrinsic atmospheric reflectance
are invariant for a short time period (Tanre et al., 1988). However, this algorithm does not consider multiple
interaction contributions between the land surface and the atmosphere and is greatly affected by weather
changes, which will lead to AOD retrieval biases. Over dark land covers such as vegetated areas and dark
soils, it has been shown that the LSR at 0.47 and 0.66 μm can be estimated from 2.1 μm with fixed ratios.
By comparing the satellite observations and LSR with a preconstructed look‐up table (LUT), the DT algo-
rithm can derive the AOD. This DT algorithm was applied to MODIS data and global daily aerosol retrieval
products (C4) was published (Kaufman, Tanre, et al., 1997). Recently, the relationships of LSRs at different
wavelengths have been further explored and updated to improve the estimation of LSR at visible wave-
lengths, which is defined as improved DT algorithm here. The improved DT algorithm has been specifically
applied to the MODIS, which is also called the second‐generation MODIS DT algorithm. Using the
International Geosphere/Biosphere Programme's scene map of U.S. Geological Survey surface types,
researchers found that the relationships between visible and shortwave infrared (SWIR) channels have a
strong dependence on both geometry and surface type. The visible and 2.12‐μm surface reflectance relation-
ship is parameterized as a function of both NDVISWIR and scattering angle (Θ), which has been applied to
the new algorithm for MODIS AOD products (C5; Levy et al., 2007). The DT and improved DT aerosol retrie-
val algorithms can performwell over DT surfaces, but one of the shortcomings is that it cannot retrieve AOD
over bright surfaces. In contrast, the DB algorithm extends the aerosol retrieval to the bright surface region
and a prior LSR database was used to provide surface reflectance. It was found that the LSR remained low in
DB channel over bright regions such as desert and urban areas (Hsu et al., 2004). If the LSR of DB channel
can be accurately estimated, then the AOD could be achieved with the expected errors within
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±0.05 ± 0.2 × AOD over land (Hsu et al., 2013). The DB algorithm was adopted to retrieve global AOD pro-
duct (C5.1) under the support of static seasonal surface reflectance database, which were precalculated using
the Sea‐Viewing Wide Field‐Of‐View Sensor surface reflectance data. An enhanced DB aerosol retrieval
algorithm, which considered the impact of vegetation seasonal changes on surface reflectance, was proposed
by Hsu et al. (2013). Three schemes were adopted for LSR estimated over natural vegetation areas,
urban/built‐up and transitional regions, and arid and semiarid surfaces. In addition, aerosol model selection
and cloud screening schemes were also improved for producing the MODIS C6 aerosol products.

The VIIRS is a sensor with 22 channels onboard the Suomi National Polar‐orbiting Partnership (Suomi NPP)
satellite, which can capture visible and infrared signal from 0.4 to 12.4 μm (Hillger et al., 2014). The new gen-
eration satellite has higher spatial and temporal resolutions and can be used to retrieve AOD. Previous stu-
dies showed that the estimation of surface reflectance and the determination of aerosol model are the main
factors affecting the accuracy of AOD retrieval (Tian et al., 2018; Wang et al., 2008). Thus, in this paper, an
improved DB algorithm is developed to retrieve high resolution AOD over bright surfaces from VIIRS data.
For our improved DB algorithm, two main improvements were implemented: (1) a spectral conversion
model between MODIS and VIIRS blue channel was constructed and (2) aerosol optical characteristics over
the study area were obtained based on AErosol RObotic NETwork (AERONET) products, which include sin-
gle scatter albedo (SSA) and asymmetry (g). The AOD retrievals were validated against the AERONET
Version 3 Level 2.0 data and compared with the operational VIIRS AOD products VAOOO as well as IVAOT.

The paper is organized as follows. Descriptions of the study area and data are introduced in section 2.
Section 3 shows the methodology of the improved DB algorithm. The AOD retrievals are validated in
section 4, followed by the discussions and conclusions in sections 5 and 6, respectively.

2. Study Area and Data Sources
2.1. Study Area

In recent years, China is suffering from serious air pollution associated with its rapid growth of economy and
population. As the capital of China, Beijing is located in eastern China, which is not only densely populated
but also in the heart of the Beijing‐Tianjin‐Hebei industrial zone, making it a typical area for air pollution
research. In addition, the external transport and internal emitted aerosol make the aerosol optical properties
of the regions extremely complex. So, in order to examine the adaptability of the improved DB algorithm,
Beijing and its surrounding areas (115–118°E, 39–42°N) were selected in this paper. Figure 1 shows the study
area along with the AERONET sites, the color of background represents different land cover type (Chen
et al., 2014), and the color of the AERONET sites represents elevation information. Totally, five
AERONET sites were included, which are Beijing, Beijing_RADI, Beijing‐CAMS, XiangHe, and
XingLong. Beijing, Beijing_RADI, and Beijing‐CAMS are three typical urban sites, which are located in
the center of the city. XiangHe and XingLong are located in the suburbs and covered by cultivated land
and forests. Except for XingLong, which is situated 899.0 m above sea level, the other four AERONET sites
are below 150 m above sea level. Observations at Beijing, Beijing_RADI, Beijing‐CAMS, and XiangHe were
used to analyze optical characteristics of aerosol particles, and observations at Beijing, Beijing‐CAMS,
XingLong, and XiangHe were used to evaluate the satellite‐based AOD retrievals.

2.2. Data

The data used in this study include the reflectance data at the top of atmosphere (TOA), AOD product and
cloud mask from VIIRS, the LSR product from MODIS for the time period from January 2014 to September
2017, and AERONET aerosol products for the time period from January 2012 to September 2017.
2.2.1. NPP VIIRS Data
The VIIRS, the expansion and improvement of Advanced Very High Resolution Radiometer and MODIS
sensor, is the second generation imaging radiometer, which boards on the Suomi NPP satellite and crosses
equator at 13:30 local time every day. It captures data in 22 sensor data records (Level 1B) from visible to
thermal infrared, including 16 moderate‐resolution bands (M‐bands), 5 high‐resolution bands (I‐bands),
and 1 panchromatic day/night band with the resolutions of 750, 375, and 750 m at nadir, respectively.
This satellite is a polar‐orbiting satellite with ~3,000‐km swath width which allows it to fully sample the
Earth every day (Hillger et al., 2014; Yang et al., 2017).
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The Level 2 aerosol optical thickness product including Environment Data Records and Intermediate
Product (IP) was also used in this study to compare with our aerosol retrievals. The VIIRS AOD IP
(IVAOT) only provided AOD at 550 nm with spatial resolution of 750 m. Differently, the VIIRS AOD
Environment Data Records (VAOOO) can provide AOD at 10 M‐Bands with wavelength range from 412
to 2,250 nm as well as at 550 nm with spatial resolution of 6 km, which is aggregated from the IP measure-
ments (Jackson et al., 2013; Liu et al., 2012). Meanwhile, the mask of inappropriate pixels including
cloud/shadow, ice, and snow is also necessary information in aerosol retrieval. Especially, the presence of
clouds will lead to cloud contamination, making aerosol retrieval fail. In this study, cloud mask products
retrieved using VIIRS cloud mask algorithm were used for unsuitable pixel identification.
2.2.2. Operational MODIS Products
LSR is one of the key factors affecting AOD retrievals. In this study, Aqua Level 2 LSR products (MYD09)
were selected to provide high precision surface information, which can reduce the influence of solar zenith
angle. The MODIS LSR product consists of seven spectral channels with a spatial resolution of 500 m and an

atmospheric correction accuracy of ±(0.005 + 5%) under favorable condi-
tions (not high aerosol amount; Vermote et al., 2015). Table 1 shows the
detailed information about the spectral wavelengths and the typical theo-
retical accuracy of MODIS LSR product (Vermote & Vermeulen, 1999).
2.2.3. AERONET Ground‐Based Measurements
The AERONET is a ground‐based remote sensing aerosol network distrib-
uted globally and observed using the CE‐318 Sun photometer. It can pro-
vide long‐term, continuous, and readily accessible database of aerosol
optical, microphysical, and radiative properties in diverse aerosol regimes.
Specifically, these properties include the observation product of AOD and
inversion products of single scattering albedo, asymmetry factor, and
phase function. AODs are measured at four wavelengths ranging from
0.34 to 1.02 μm every 15 min with a low uncertainty of 0.01–0.02. Until
now, AERONET has released three versions of the data and each

Figure 1. Land cover type and AErosol RObotic NETwork ground‐based stations distribution over the study area.

Table 1
Detail Information of MODIS LSR Product and Total Theoretical
Typical Accuracy

Band Wavelength (μm) Center wavelength (μm) Error

1 0.620–0.670 0.646 0.005
2 0.841–0.876 0.856 0.014
3 0.459–0.479 0.466 0.008
4 0.545–0.565 0.554 0.005
5 1.230–1.250 1.242 0.012
6 1.628–1.652 1.629 0.006
7 2.105–2.155 2.114 0.003

Note. LSR = land surface reflectance; MODIS = MODerate‐Resolution
Imaging Spectroradiometer.
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version of the data includes three data quality levels: Level 1.0 (L1.0, unscreened), Level 1.5 (L1.5, cloud‐
screened and quality controlled), and Level 2.0 (L2.0, quality‐assured; Holben et al., 2001). In this study,
AERONET Version 3 L2.0 AOD measurements were selected to quantitatively evaluate the reliability of
our AOD retrievals. In addition, Version 2 L2.0 inversion products were also used to calculate aerosol optical
parameters. Note that Version 3 inversion products were not released during our data processing time, thus
it is not used here. Totally, five AERONET sites over the study area were adopted in the analysis. The spatial
locations of each AERONET site are also shown in Figure 1. Note that AERONET does not provide the AOD
information at 550 nm. Instead, AERONET AOD at 550 nm is calculated based on the Ångström exponent,
along with the available AERONET AOD at the two nearest wavelengths (Angstrom, 1964).

3. Methodology

An improved DB aerosol retrieval algorithm was proposed in this study with the a priori LSR database sup-
port for VIIRS data over complex land surfaces. The radiant energy acquired by the satellite at the TOA is the
result of interaction of electromagnetic waves with the earth's surface and the atmosphere, which can be esti-
mated as follows (Hsu et al., 2004; Tanre et al., 1988),

ρ* τ; θs;φs; θv;φvð Þ ¼ ρ0 τ; θs;φs; θv;φvð Þ þ T θsð ÞT θvð Þ ρ θs;φs; θv;φvð Þ
1−ρ θs;φs; θv;φvð ÞS (1)

where τ,θs,φs,θv,and φvare the AOD, solar zenith angle, solar azimuth angle, view zenith angle, and view azi-
muth angle, respectively; ρ*(τ, θs,φs, θv,φv) is the TOA reflectance received by the sensor; ρ0(τ, θs,φs, θv,φv)is
the atmospheric path reflectance including the joint contribution of the atmospheric molecules and aerosol
particles; ρ(θs,φs, θv,φv) is the LSR; and T is the total transmittance weakened by the atmospheric molecules
and aerosol particles, whereT(θs) and T(θv)represent the transmittance from the sun to the surface and from
the surface to the satellite, respectively; S is the spherical albedo of the atmosphere.

In equation (1), the first term on the right side is the pure atmospheric contribution, and the second term is
the combined contribution from the atmosphere and the surface. From equation (1), we can find that as the
LSR increases, the TOA reflectance becomes less sensitive to aerosol. As a key parameter of aerosol retrieval,
LSR should be accurately estimated. On the other hand, aerosol optical characteristics are other key factors
in aerosol retrieval particularly considering that aerosol type has large spatial and temporal variations.
Therefore, LSR and aerosol optical characteristics need to be carefully considered in the retrieval of aerosol
properties using satellite observations.

3.1. Surface Reflectance Estimation

The LSR has great interannual variations, especially in vegetation and farmland regions during growing sea-
sons. In the traditional aerosol retrieval algorithm, the LSR is usually assumed with little changes over a per-
iod of time (Hsu et al., 2013; Sun et al., 2016). Using a minimum synthesis or second minimum synthesis
algorithm (Hsu et al., 2004, 2013), the a priori surface reflectance database is often constructed with a time
resolution of 1month. It may lead to large uncertainty to the AOD retrievals, considering the large sensitivity
of AOD to surface reflectance as indicated earlier. To solve this problem, two improvements were proposed
and implemented for the AOD retrieval in this study. On one hand, an 8‐day period MODIS surface reflec-
tance product (MYD09 A1) was used to get more realistic surface reflectance information. Each surface
reflectance pixel in the MYD09 A1 product was selected from daily surface reflectance products on the basis
of high observation coverage, low satellite zenith angle, the absence of clouds or cloud shadow, and low aero-
sol loading (Vermote et al., 2015). Compared with the monthly synthesis, 8‐day period synthesis has high
precision as shown in Table 1 and can reduce the error associated with the surface reflectivity to some extent.
On the other hand, due to the difference of spectral response function between the MODIS and VIIRS blue
band, a spectral conversion model was constructed in this study using the ASTER measured surface
reflectance data.

In the spectral conversion, we approximate the surface as a mixture of vegetation and soil. The vegetation
and soils spectral curves were collected from the ASTER spectral library (Baldridge et al., 2009) as endmem-
ber spectra, and the mixed pixels were simulated by changing the fraction of vegetation cover (Sun et al.,
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2010; Tian et al., 2018; Wang et al., 2012). And then the actual surface
reflectance can be calculated using the following formula:

ρi ¼
∫
λ2
λ1P λð ÞS λð Þdλ
∫
λ2
λ1S λð Þdλ

(2)

ρ ¼ ρs×f s þ ρv×f v (3)

wherePis the spectral curve, S represents the spectral response function,
ρirepresents the reflectance in channel i whileρs and ρvare the MODIS
or VIIRS reflectance of soil and vegetation in blue channel which can be
obtained from formula (2), fs and fv are the proportion of vegetation and
soil area, and ρis the actual surface reflectance of the mixed pixel.

Previous studies have shown that the surface reflectance from two differ-
ent sensors in close channels can be fitted using a linear regression model,
which can reduce the surface reflectance error caused by sensor spectral
differences (Sun et al., 2010, 2016). Figure 2 is a scatter plot of the surface
reflectance between the MODIS and VIIRS blue channel, in which the
color represents the density of the scatter. As seen in Figure 2, the surface
reflectance of the MODIS and VIIRS has a strong correlation (R2 = 0.99),
and the spectral conversion model is developed as follows:

ρviirs ¼ 1:062×ρmodis þ 0:004 (4)

3.2. Assumptions Regarding Aerosol Types

Optical characteristics of aerosol particles are the other important factor affecting the AOD retrieval
(Jacobson, 2000; Takemura et al., 2002; Tian et al., 2018). The aerosol characteristics are very complex in
Beijing, due to the complicated aerosol sources, including both urban anthropogenic emissions and trans-
port of Beijing‐Tianjin‐Hebei industrial pollution. In order to obtain more accurate aerosol particle charac-
teristics in this region, and then achieve high precision AOD results, the aerosol SSA and g are statistically
analyzed based on observations from AERONET sites from 2012 to 2017. Seasonal variation of aerosol par-

ticle characteristics has been investigated. Same as many previous studies
(Li et al., 2015; Tian et al., 2018; Wang et al., 2015; Yu et al., 2017), we
found that both SSA and g are similar between spring and summer (SS)
and similar between autumn and winter (AW). In the 6S (Second
Simulation of the Satellite Signal in the Solar Spectrum) radiative transfer
model, the atmospheric mode parameters are divided into two types: mid-
latitude summer and midlatitude winter. Considering these, SSA and g in
both SS and AW have been statistically obtained and implemented into
the 6S radiative transfer model. Figure 3 shows the spectral distributions
of aerosol SSA and g in both SS and AW over the study area obtained with
observations fromAERONET sites. As can be seen from the Figure 3, both
the SSA and g have large differences between SS and AW. The SSA is sig-
nificantly higher in SS than in AW, indicating that aerosols in AW have
stronger extinction efficiency, which may be related to large fossil fuel
combustion in winter heating season. Table 2 further lists the aerosol
SSA and g in different seasons used in the AOD retrieval in this study.

3.3. Pixel Selection and AOD Retrieval

Themask identification for unsuitable pixels is also important to the aero-
sol retrieval. Wrong identification of unsuitable pixels would lead to large
errors, even incorrect retrievals of AOD. The VIIRS cloud mask products,
which were derived based on a series of reflectance and brightness

Figure 2. The scatter plot of surface reflectance between MODerate‐
Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared
Imaging Radiometer Suite (VIIRS) blue band. The color represents the
density of the scatter, and the dashed line represents the linear regression
fitting line.

Figure 3. The optical parameters of aerosol over the study area. The green
solid line represents the SSA, while the blue solid line is the asymmetry
factor, and the dots and triangles represent the SS and AW, respectively; red
vertical line indicates wavelength is 550 nm.
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temperature threshold tests, were selected for cloud, cloud shadow, and ice/snow screening (Godin &
Vicente, 2017).

Similar as the traditional DB retrieval algorithm, the AODs were retrieved using the preconstructed LUT
approach. The parameters in LUT are generated based on 6S atmospheric radiative transfer model, which
can improve the retrieval efficiency compared to that calculated directly. For clear‐sky atmosphere, the 6S
model can simulate the solar radiation transmission process in the Earth's atmosphere and calculate the
radiance of received by the sensor. In addition, the 6S atmospheric radiative transfer model also effectively
considers the absorption of H2O, CO2, O3, and O2, as well as molecular and aerosol scattering (Kotchenova
et al., 2006, 2008; Kotchenova & Vermote, 2007). Then, the parameters in equation (1) are calculated using
6S model for different AOD from 0.0 to 3.0. Finally, The TOA reflectance is calculated for solar and sensor
zenith angles from 0° to 60° at intervals of 6°, relative azimuth angles from 0° to 180° in increments of 12°
and surface reflectance from 0.01 to 0.15 in increments of 0.01.

Figure 4 shows the flowchart of our improved aerosol retrieval algorithm for VIIRS images. First, we identify
unsuitable pixels including cloud, cloud shadow, and ice/snow. Second, based on the assumption of simple

Table 2
Optical Properties of Different Aerosol Models Used in AOD Retrieval

Season
Single scattering albedo

0.47/0.55/0.66 μm
Asymmetry parameter
0.47/0.55/0.66 μm

Spring and summer 0.935/0.940/0.942 0.712/0.686/0.666
Autumn and winter 0.895/0.904/0.909 0.698/0.671/0.651

Note. AOD = aerosol optical depth.

Figure 4. Flowchart of the improved aerosol retrieval algorithm. NPP = National Polar‐orbiting Partnership;
VIIRS = Visible Infrared Imaging Radiometer Suite; MODIS = MODerate‐Resolution Imaging Spectroradiometer;
AOD = aerosol optical depth.
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mixed pixels, the spectral conversion model between MODIS and VIIRS blue channel was constructed, and
then the LSR of VIIRS blue channel was calculated. Third, the SSA and g were determined by using the his-
torical AERONET sites observations and a LUTwas constructed. Finally, the AODs at 550 nmwere retrieved
and validated against AERONET data and VIIRS AOD products, respectively.

4. Results and Discussion

This study develops an improved DB aerosol retrieval algorithm based on VIIRS observations, which
includes two improvements, the construction of the surface reflectance conversion model and aerosol opti-
cal parameter acquisition. The improved retrieval algorithm is then applied to the VIIRS M‐Band images
over the study areas during 2014–2017. Finally, the VIIRS aerosol products including VAOOO and IVAOT
and AERONET Version 3.0 level 2.0 ground‐based AOD measurements within the same period were used
for validation and comparison. Considering that AERONET only provide AOD values at a single point in
space, the AOD retrievals within a sampling window 5 × 5 pixels around the AERONET site were used in
the comparison study. At the same time, there are few cases that the retrieved AODs are with large fluctua-
tions and less reliability, which were discarded using the standard deviation. The average of the remaining
values is calculated as the retrieved AOD for comparison with the AERONET measurements within the
closest moment.

To quantitatively evaluate the precisions of our retrievals, four main evaluation metrics, including the bias
(equation (5)), root‐mean‐square error (RMSE, equation (6)), mean absolute error (MAE, equation (7)), and
relative mean bias (RMB, equation (8)) were calculated. Moreover, the linear fitting regression equation is
also used to evaluate the performance of our retrieval algorithm, along with the coefficient of determination
(R2). The bias indicates the average deviation between the retrieval result and the measured value. The
degree of dispersion of the data can be measured using RMSE. MAE and RMB are also widely used to eval-
uate the accuracy of two sets of data: MAE can avoid the problem that the errors cancel with each other, thus
accurately reflect the actual retrieval error; RMB indicates the average uncertainty estimation of the AOD
retrievals, where RMB > 1 and RMB < 1 represents the overestimation and underestimation, respectively.

Figure 5. Comparisons of common AODs using improved aerosol retrieval algorithm against AERONET AOD measure-
ments over Beijing (a), Beijing‐CAMS (b), XiangHe (c), and XingLong (d). AOD = aerosol optical depth; RMSE = root‐
mean‐square error; MAE = mean absolute error; AERONET = AErosol RObotic NETwork; RMB = relative mean bias.

10.1029/2019EA000574Earth and Space Science

YANG ET AL. 636



Bias ¼ 1
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∑
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i
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RMSE ¼
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MAE ¼ 1
n
∑
n

i¼0
AODi

Retrieval−AOD
i
AERONET

�� �� (7)

RMB ¼ AODRetrieval=AODAERONET (8)

4.1. Validation With AERONET AOD Measurements

Same as Huang et al. (2016), the performance of retrieval algorithm is
evaluated by comparing with the AERONET AOD measurements.
Huang et al. (2016) found that the VIIRS AOD exhibits an overall global
bias against AERONET of −0.0008 with RMSE as 0.12. They also sug-
gested that the retrieval errors are linked to specific regions, seasons, sur-
face characteristics, and aerosol types. We here investigate the
performance of our retrieval algorithm over heavy polluted region around
Beijing for the study period.
4.1.1. Site and Regional Performance
The Version 3.0 AERONET aerosol product at four sites including Beijing,
Beijing‐CAMS, XiangHe, and XingLong over the study area are used to
verify the AOD retrievals from January 2014 to September 2017.
Figure 5 shows the comparison results of retrieved AOD against the
AERONET AOD, in which the dotted line represents the 1:1 line and
the solid blue line represents the linear fitting regression line. More

Figure 6. Comparisons of AODs from the improved aerosol retrieval algorithm against AERONETAODmeasurements in
different seasons: (a) spring, (b) summer, (c) autumn, and (d) winter. AOD = aerosol optical depth; RMSE = root‐mean‐
square error; MAE = mean absolute error; AERONET = AErosol RObotic NETwork; RMB = relative mean bias.

Figure 7. Box plots of AOD differences (AOD retrievals‐AERONET AODs)
versus AERONET AOD. For each box whisker, the low and upper solid
lines in the box demonstrate the 25th and 75th percentiles of the AOD
biases, the lower and upper whiskers are theminimum andmaximum of the
AOD error, the middle line in each box represents the median value of
the AOD biases, the middle circle in each box shows the mean value of the
AOD retrieval biases, the dashed line is y = 0, and the number above each
box refers to the corresponding samples in each bin of AERONET AODs.
AOD = aerosol optical depth; AERONET = AErosol RObotic NETwork.
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than 340 samples have been used for each site of Beijing, Beijing‐CAMS,
and XiangHe. In contrast, there are only 36 samples at XingLong
site, since the site has no longer provided observation data since
November, 2014. Figure 5 shows that the AOD is mainly between 0 and
1.0. Based on the four evaluation metrics we introduced, the aerosol
retrievals are highly consistent with the AERONET ground‐based obser-
vations. The linear regression line is basically the same as the 1:1 line.
Simultaneously, the coefficient of determination (R2) is large, the bias is
less than 0.05, and the RMSE (0.16–0.17) and the MAE (0.10–0.12) are
small overall. Note that the RMSE errors are slightly larger for our retrie-
vals over the study region compared to that found for the VIIRS NPP AOD
product over the global land by Huang et al. (2016), which is 0.12.
Compared with XiangHe and XingLong, Beijing and Beijing‐CAMS are
two typical urban sites, with the surface reflectance less subject to seaso-
nal changes in vegetation. Correspondingly, the AOD retrievals show a
high precision with an average overestimation of 4.24% (RMB = 1.0424)
and 7.92% (RMB = 1.0792) at Beijing and Beijing‐CAMS, respectively.
Differently, the underlying surface of the XiangHe and XingLong sites is
mainly vegetation associated with which there are relatively large aerosol
retrieval errors, overestimations of 10.56% and 9.4%, respectively.
4.1.2. Seasonal Performance
Both aerosol type and surface reflectance have significant seasonal varia-
tions. Thus, further research is carried out to investigate the efficiency and

stability of the improved aerosol retrieval algorithm in different seasons, which is shown in Figure 6. There
are totally 384, 134, 227, and 396 pairs of samples in spring, summer, autumn, and winter, respectively. For
different seasons, the AOD retrievals agree well with the AERONET AODs with coefficient of determination
(R2) between 0.78 and 0.92. However, Figure 6 shows that there are obvious seasonal differences in the per-
formance of our improved retrieval algorithm. Compared with AW, the retrieved AODs have lower biases
with average values of 0.0015 and 0.0057 and lower RMBs of 1.0033 and 1.0098 in SS. However, the retrieved
AODs have larger correlations and lower RMSE with AERONET AODs in AW than in SS. For example, the
improved AOD retrievals agree well with AERONET AODs (R2 = 0.92 and 0.87), with the average RMSEs of
0.1491 and 0.1344 and MAEs of 0.1068 and 0.0928 in AW, respectively. Different from the other three sea-
sons, the aerosol retrievals have relatively large errors in winter. This is likely due to the errors in aerosol
particle characteristics such as SSA and g, because the coal burning over the study area in winter makes
the regional aerosol optical characteristics more complicated.
4.1.3. Variation of Retrieval Biases With AOD
Figure 7 shows the boxplots of AOD retrieval biases (AOD retrievals‐AERONET AODs) against the ground‐
based AOD observations over the study region from 2014 to 2017. For each box whisker, the low and upper
solid lines in the box demonstrate the 25th and 75th percentiles of the AOD biases, the lower and upper
whiskers are the minimum andmaximum of the AOD error, the middle line in each box represents the med-
ian value of the AOD biases, the middle circle in each box shows the mean value of the AOD retrieval biases,
the dashed line is y = 0, and the number above each box refers to the corresponding samples in each bin of
AERONET AODs. Overall, as mention earlier, the AOD retrievals are mainly between 0 and 1.0, which
account for 91.67% of the total samples. The mean AOD retrieval bias is 0.09 with upper and lower quantile
values of 0.04 and −0.01, respectively, when AOD is between 0.0 and 0.1. When AOD increases, the mean
AOD retrieval bias along with the upper and lower quantiles increases. For example, when AOD is between
0.8 and 1.0, the mean AOD retrieval bias is 0.25 with upper and lower quantile values of 0.25 and −0.18,
respectively, which are larger than that when AOD is between 0.0 and 0.1.

4.2. Comparison With Operational AOD Products

VIIRS AOD products have been fully evaluated by previous studies (Huang et al., 2016; Liu et al., 2012).
Particularly, Huang et al. (2016) showed good performance of VIIRS AOD products compared to
AERONET measurements and investigated various influential factors to the uncertainties of VIIRS AOD.
In this study, VIIRS aerosol products are also used for cross validation of our retrieval algorithms over the

Figure 8. The verification results for the two Visible Infrared Imaging
Radiometer Suite aerosol products (VAOOO and IVAOT) and our AOD
retrievals using AERONET ground AOD. The green, red, and blue repre-
sents VAOOO, IVAOT, and the AOD retrievals using the improved deep
blue algorithm, respectively. The seven indicators used here are Bias, RMSE,
MAE, R2, MAB,A, and B, whereA and B represent the slope and intercept of
the regression line. AOD = aerosol optical depth; RMSE = root‐mean‐
square error; MAE = mean absolute error; RMB = relative mean bias.
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study region from 2014 to 2017, which include IVAOT and VAOOO with resolution of 750 m and 6 km at
nadir, respectively. Figure 8 shows the verification results for the two VIIRS aerosol products and our
AOD retrievals using AERONET ground‐based aerosol data. Same as what we did earlier, seven
indicators are calculated including Bias, RMSE, MAE, R2, MAB, A, and B, where A and B represent the
slope and intercept of the linear fitting regression line. VAOOO AOD and our AOD retrievals have a
small negative bias, while IVAOT AOD has a larger positive bias. Both VAOOO and IVAOT AODs have
large RMSE and low coefficient of determination (~0.6) compared with AERONET AOD. In addition, the
VAOOO AOD has higher accuracy than IVAOT AOD, which overestimate (RMB = 1.31) aerosols results
seriously. Our AOD retrievals are more accurate with Bias = 0.01, R2 = 0.87, and MAE = 0.12.
Moreover, the RMSE for our retrievals is about 52% smaller than that for IVAOT. Meanwhile, VAOOO
AOD and our AOD retrievals have the similar RMB but VAOOO AOD has a larger intercept (B = 0.11),
which indicates that VAOOO overestimates AOD when AOD is small. The verification results indicate
that our aerosol retrieval algorithm is robust and can retrieve AOD with more accuracy than the VIIRS
aerosol products.

Figure 9. Comparisons of spatial distributions of retrieved AOD (the second column) with IVAOT AOD (the third column) and VAOOOAOD (the fourth column)
over the study area, along with the original satellite true color composite images (the first column), for observation time of 13 April 2014 (the first row), 13 August
2015 (the second row), and 4 March 2017 (the third row). AOD = aerosol optical depth.
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4.3. Spatial Distributions of AOD

Three cases were selected to display the spatial distribution of AOD from
our retrievals and VIIRS products on 13 April 2014, 13 August 2015, and 4
March 2017, as shown in Figure 9. The four columns from left to right
represent true color composite images (RGB:543), retrieved AOD,
IVAOT AOD, and VAOOO AOD, respectively. The blank areas represent
those with invalid aerosol retrievals. The color of AERONET sites shows
the AOD value from the AERONET measurements, which has the same
color definition as retrieved AOD. The VIIRS aerosol algorithm did not
retrieve aerosols over inappropriate situations (cloud, bright surfaces,
etc.), for which the AOD in the IVAOT aerosol product was obtained
using an interpolation method based on the retrieved aerosol results and
operational aerosol chemical transport model results. Even though the
IVAOT AOD products can provide aerosol for every pixel, the results have
a large bias over bright urban surface, as well as over vegetation and water
areas. The VAOOO aerosol product did not adopt the interpolation
method for those inappropriate conditions. As shown in Figure 9, the
VAOOO AOD products have a large number of missing values with rela-
tively poor spatial continuity. Compared with the two VIIRS operational
aerosol products, our retrieved AODs are more consistent with the
AERONET AOD measurements with smaller biases. Actually, our

retrieved AODs show more consistent spatial distribution with the true color composite images than the
two VIIRS operational aerosol products of AOD.

5. Discussions

Surface reflectance and aerosol particle characteristics are key factors affecting aerosol retrieval (Chu et al.,
2003). The 8‐day synthetic surface reflectance database can reduce the surface reflectance error caused by
the surface changes to a certain extent and then reduce the errors in the aerosol retrieval. More accurate
aerosol particle characteristics could also be obtained based on the AERONET sites observations, which

can be further used in the satellite‐based aerosol retrieval. However, our
retrievals could still have certain uncertainties due to the spatiotemporal
variations of the surface type and aerosol particle characteristics. We here
briefly investigate the effects of LSR error and aerosol optical parameter
error on aerosol retrievals based on the 6S atmospheric radiative transfer
model simulation.

5.1. LSR

In this paper, the influence of LSR on aerosol retrievals was simulated
using the 6S radiative transfer model with 18°, 18°, and 60° for the satellite
zenith angle, solar zenith angle, and relative azimuth angle under LSR
between 0.01 and 0.1 with the step of 0.01. Previous studies showed that
the LSR of most surface cover types are less than 0.1 (Wei & Sun, 2017).
Figure 10 shows the simulation results. The black horizontal line repre-
sents the TOA reflectance of 0.16. It indicates that LSR have a significant
impact on aerosol retrievals. As LSR increases, the sensitivity of AOD
retrieval to surface reflection also increases. Quantitatively, when AOD
is equal to 1.0 with TOA reflectance of 0.16, the surface reflectance error
of 0.01 can cause an AOD retrieval error of approximately 0.08
(LSR ~ 0.04), while the error of AOD retrieval would reach to approxi-
mately 0.15 (LSR ~ 0.09), similar to previous simulation results
(Kaufman, Wald, et al., 1997; Tian et al., 2018; Wang, Sun, et al., 2017).
Therefore, it is critical to estimate the LSR especially in urban areas.
Figure 10 also shows that the sensitivity of AOD retrieval to surface

Figure 10. Influence of LSR error on AOD retrieval with changes of TOA
reflectance. The results are from the 6S radiative transfer model simula-
tions. LSR = land surface reflectance; AOD = aerosol optical depth;
TOA = top of atmosphere.

Figure 11. The variation of simulated TOA reflectance with the SSA and
AOD by the 6S radiative transfer model. AOD = aerosol optical depth;
LSR = land surface reflectance; TOA = top of atmosphere.
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reflectance is dependent on the TOA reflectance. When TOA reflectance increases, that is, the contributions
of aerosol to the radiant energy at the TOA increase, but the sensitivity of AOD retrievals to surface reflec-
tance decreases. The sensitivity of aerosol to change of TOA reflectance is high with large slopes approxi-
mately 0.08 over the dark regions and 0.05 over bright regions. Previous studies (e.g., Wei et al., 2018)
showed similar findings while the values are slightly different due to the wavelength differences for the
MODIS simulation. Overall, the LSR error can to some extent cause error of AOD retrieval.

5.2. Aerosol Optical Parameters

The effect of aerosol SSA on the satellite‐based AOD retrieval is also investigated with the 6S radiative trans-
fer model simulations with the same parameters as shown in section 5.1 except that the LSR was set to 0.08
and the SSA was set from 0.90 to 0.98 in an increment of 0.02. Figure 11 demonstrates the variation of simu-
lated TOA reflectance with the SSA and AOD. Different from the surface reflectance, the sensitivity of AOD
retrievals to SSA increases with the decreasing SSA for a fixed TOA reflectance, which is basically consistent
with that found in previous studies (e.g., Hsu et al., 2004). Meanwhile, the sensitivity also increases with the
increasing TOA reflectance. Compared with the study of Tian et al. (2018), SSA has a greater impact on AOD
retrieval in high surface reflectance regions. On the other hand, the impact of SSA on AOD retrievals
increases with AOD. Thus, there is no doubt that SSA is crucial for the AOD retrieval.

6. Conclusions

In this paper, an improved DB aerosol retrieval algorithm was proposed based on VIIRS data. Two main
improvements were implemented in the new retrieval algorithm including the estimation of LSR and the
statistics of aerosol particle optical characteristics. In order to reduce the influence caused by the difference
in LSR, the spectral conversion model between MODIS and VIIRS blue channel was constructed using the
measured spectral data under the assumption of simple mixed pixels. In addition, based on the historical
aerosol optical properties from AERONET site observations, the aerosol SSA and asymmetry factor were
determined and a more accurate aerosol retrieval LUT was constructed using the 6S atmospheric radiative
transfer model. Then, the improved retrieval algorithm was applied to the VIIRS data with the resolutions
of 750 m at nadir from January 2014 to September 2017.

To test and validate the performances of the improved aerosol retrieval algorithm, ground‐based AERONET
AOD data with version 3, VIIRS aerosol products including IVOOO and IVAOTwith the resolutions of 6 and
0.75 km were used for comparison. Seven statistical indicators are introduced for the evaluation of retrieval
algorithm performance, which include Bias, RMSE, MAE, R2, MAB, A, and B, where A and B represent the
slope and intercept of the regression line.

The results show that the improved aerosol retrieval algorithm performs well compared to the AERONET
AOD, with high coefficient of determination (R2) of 0.81, 0.85, 0.86, and 0.68 at Beijing, Beijing‐CAMS,
XiangHe, and XingLong, respectively. Our improved aerosol retrieval algorithm also showsmuch better per-
formance than the VIIRS aerosol products based on seven statistical indicators we introduced, compared
with the AERONETAOD. The above results indicate that the proposed improved aerosol retrieval algorithm
can obtain more accurate AOD results compared to current VIIRS AOD products.
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