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Abstract: High temperatures in urban areas cause a significant negative impact on the residents’
health. In a megacity such as Beijing, where both the land cover and social composition of residents
are highly spatially heterogeneous, understanding heat vulnerability at a relatively fine scale is a
prerequisite for place-based heat intervention actions. Both principal component analysis (PCA) and
equal-weighted index (EWI) are commonly used in heat vulnerability studies. However, the extent to
which the choice of these approaches may impact the results remains unclear. Our study aimed to fill
this gap by estimating heat vulnerability at the jiedao scale (the smallest census unit) in Beijing based
on socioeconomic characteristics, heat exposure, and the use of air conditioners. Our results show that
the choice of methods had a considerable impact on the spatial patterns of estimated heat vulnerability.
PCA resulted in a ring-like pattern (high in the central and low in the suburb), whereas EWI revealed
a north–south discrepancy (low in the north and high in the south). Such a difference is caused by the
weighting scheme used in the PCA. Our findings indicate that heat vulnerability pattern revealed
by a single measure needs to be interpreted with caution because different measures may produce
disparate results.

Keywords: urban heat; vulnerability; spatial pattern; Beijing; principal component analysis

1. Introduction

When high temperatures occur, they induce the onset of death due to certain types of diseases.
For instance, the heat wave in Beijing in 2010 caused an increase in total population mortality [1]
and an increase in emergency cases [2]. In the same year, the heatwave also caused massive loss of
life and economic costs to Russia [3]. The heat wave in France in August 2003 caused more than
15,000 deaths [4]. A study in the US showed higher mortality risk from heat waves that were more
intense or longer, or heat waves occurring earlier in summer [5]. The urban heat island effect aggravates
the adverse effects of high temperatures on the health of urban residents [6,7].

China has experienced rapid urbanization [8] and aging; its urban population exceeded 50% in
2010 and will reach 77.5% by 2050 [9]. For example, the population of Beijing has increased by 58% since
2000 (Website of Beijing Municipal Bureau of Statistics); the percentage of elderly people aged 65 and
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over in China who live in urban areas rose from 33.38% in 2000 to 43.94% in 2010 (United Nations
Demographic Yearbook System—Population Census Datasets). This means that the urban population
affected by high temperatures is increasing. In addition, anthropogenic heat release has been shown to
be an important factor enhancing the urban heat island effect [10].

Studies have found that the heterogeneity of temperature and the heterogeneity of socioeconomically
vulnerable people are largely correlated, leading to the most vulnerable people being exposed to the most
severe heat or heat waves, which exacerbates the health costs for vulnerable people [11]. Therefore, it is
especially important to locate vulnerable populations and to provide more accurate resource allocation
schemes to reduce the adverse health effects of high temperatures. The heat vulnerability assessment
is aimed at solving this problem. Heat vulnerability studies estimate the health risks to vulnerable
residents during high-temperature periods, which helps decision-makers locate vulnerable areas and
populations and optimize resources to reduce health consequences due to high temperatures.

Regarding how the heat vulnerability index is built, the current research approaches can be
summarized into two main paradigms: one is by directly giving the weight of each indicator,
and the other is by calculating weights for indicators through statistical analysis. The essence of the
first approach is that the weights of the variables are preset (usually, variables’ weights are equal);
these variables are added to or superimposed onto a map; and areas exceeding a certain value, or
variables that are above average or exceed a certain number [11,12] will be recognized as a heat
vulnerability area. The second approach for assessing heat vulnerability is the comprehensive
index approach [13–17], which uses a combination of large numbers of known risk factors to
represent the heat vulnerability of the community. Researchers often use principal component
analysis (PCA) [13,14,16,18,19] to aggregate selected risk predictors into fewer factors to simulate
population vulnerability. This allows for a comparison of the heat vulnerability of different communities
and the classification of communities based on vulnerability (e.g., low and high). In general, researchers
tend to use PCA when the variables are abundant. The calculated component score coefficient matrix
can be used to derive the final factor score equation. The weight of each variable can be obtained from
the table so that the influence of different variables on the result can be obtained.

In terms of indicators, the current research is mainly based on statistical data in databases such
as censuses. Scholars from all over the world have evaluated the heat vulnerability of populations
based on existing epidemiological and expert opinions, combined with the actual availability of data
(see Table 1). Indicator selection needs to consider the heterogeneity of the region, the objectivity and the
availability of data, and the actual situations in different countries. Therefore, the selection of evaluation
indicators has not yet formed a unified standard, but there is a great similarity in the categories.
The categories of variables are age, income, education, poverty, ethnicity, health status, and air
conditioner ownership [11,13–15,18,20]. The most common indicator for assessing exposure is land
surface temperature (LST), followed by normalized difference vegetation index (NDVI), non-vegetation
coverage (area), impervious ratio, and normalized difference built-up index (NDBI) [11,13–16,21].
Many studies are based on local situations and the availability of data using local characteristics,
such as tribes and caste conditions [20]. From the research scale, foreign studies often use census tract
or block group [13,14] and neighborhood [21] as the basic research units, and domestic studies are
usually based on cities [22,23], districts, and counties [16,24].
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Table 1. Summary of indices and variables for heat vulnerability assessment.

Literature Index Approach Principal Component/Factor Variables

Reid et al. [13] Heat vulnerability
index

Principal components
analysis (PCA)

Social/environmental
vulnerability

Below poverty line

Race other than white

Less than a high school (HS) diploma

No green space

Social isolation
Live alone

Age ≥ 65 living alone

Prevalence of no air
conditioning (AC)

No central AC

No AC of any kind

Proportion of elderly/diabetes Diabetes

Age ≥ 65 years

Johnson et al. [14]
Extreme heat

vulnerability index PCA

1

Females age 65 and up

Males age 65 and up

Females age 65 and up living alone

White population

Females head of household

Males age 65 and up living alone

Mean family income in 1989

Per capita income in 1989

Mean household income in 1989
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Table 1. Cont.

Literature Index Approach Principal Component/Factor Variables

Population 25 and older with less than high school education

Asian population

Population age 65 and older in group living

2
Other race population

Hispanic population

Population 25 and older with a high school education

3
Normalized difference built-up index (NDBI)

Normalized difference vegetation index (NDVI)

4
Black population

Land surface temperature (LST)

Reid et al. [15] Heat vulnerability
index

PCA

Social/environmental
Vulnerability

Below poverty line

Race other than white

Less than a high school diploma

No green space

Social isolation
Live alone

Age ≥ 65 living alone

Prevalence of no AC
No central AC

No AC of any kind

Proportion of elderly/diabetes Diabetes

Age ≥ 65 years
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Table 1. Cont.

Literature Index Approach Principal Component/Factor Variables

Harlan et al. [18] Heat vulnerability
index

PCA

Socioeconomic vulnerability

Ethnic minority

Latino immigrant

< Poverty line

No HS diploma

No central AC/cooler

Elderly/isolation
≥ 65 years of age

≥ 65 years of age × living alone

Living alone

Unvegetated area Unvegetated area (mean)

Unvegetated area (SD)

Bai et al. [16] Heat vulnerability
index

PCA

Poverty
Low income

Low income among seniors

Low income households

Elderly/fragile health/illiterate
Age ≥ 60

Loss of labor ability

Illiterate

Social isolation
Living alone

Age ≥ 60 living alone

Small dwelling Households with only one room

Households ≤ 8 m2 living spaces
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Table 1. Cont.

Literature Index Approach Principal Component/Factor Variables

Zhang et al. [25] Heat risk index

Crichton’s Risk
Triangle

(a function of hazard,
exposure, and
vulnerability)

Hazard index

Daytime temperature

Nighttime temperature

High temperature days

Air quality

Exposure index
Elderly population

Elderly with disability

Low income elderly

Vulnerability index

Vegetation

Water bodies

Terrain condition

Housing condition

Traffic convenience

Medical facilities

Hu et al. [26] Excessive heat
events (EHEs)

Total population
exposed to the diurnal

heat

Temperature Near-surface air temperature

Population Commute-adjusted diurnal population
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PCA is a dimensionality reduction approach that identifies a few integrated variables from
multiple variables (indicators) to achieve data reduction. However, PCA extracts factors based on the
statistical characteristics of the data. The variables that make up a factor are sometimes derived from
variables of different categories. Sometimes, the variables of the same category are fitted into different
factors, which makes the interpretation of the results more difficult. The calculation process of the equal
weight index (EWI) approach is divided into two steps. One is to measure the distribution of variables
by dividing the distance between the data points of the variables and the mean by the standard
deviation (STD). The second is to distinguish the direction of influence of the variable—positive or
negative—and then add the variables up with equal weights to get the index. Its calculation process is
concise, and it is easy to operate and understand the results. However, to what extent the choice of these
approaches may impact the resulted estimation of heat vulnerability remains unclear. Therefore, in this
study, we aimed to compare the performance of two commonly used approaches, PCA and EWI,
in assessing the urban heat vulnerability in Beijing in 2010.

2. Materials and Methods

2.1. Study Area

Beijing is an international metropolis and a political and cultural center of China. To address
our research questions, we focused on the urban area of Beijing, which is in the center of the Beijing
metropolitan area (Figure 1), where both land cover and social composition of residents are highly
spatially heterogeneous. The study site is approximately 1384 km2, which is 8.4% of the total area of
Beijing. It includes six districts and 130 subdistrict units (i.e., neighborhoods, referred to as jiedao in
China). We used jiedao as our analysis unit in this study and used the term “jiedao” in the following
text for the convenience of discussion. The total population of the urban area was approximately
1.25 million in 2016, which is 57.4% of the total population. Therefore, based on the actual situation
in Beijing, it is urgent to carry out research on the fine-scale heat vulnerability pattern and coping
strategies in Beijing.
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Figure 1. Study area, composed of six districts and 130 jiedao (i.e., a city block, which is the smallest
census unit).

Beijing has a continental monsoon climate with four distinct seasons. The annual precipitation
was 669.1 millimeters in 2016. The average monthly temperature ranged from −3.1 ◦C in January to
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26.7 ◦C in July. Heat waves were common in the summer (June to August), which not only caused
discomfort for the residents but also posed a severe health burden to people vulnerable to excess heat.

2.2. Data Sources

2.2.1. Land Surface Temperature and Normalized Difference Vegetation Index

We used the mean land surface temperature (LST) and normalized difference vegetation index
(NDVI) to describe the heat environment for each jiedao. LST has been widely used in human
health [27] and heat vulnerability studies [13–15,18,20], since it is easily available and adequately
represents local temperature variability, showing a higher spatial heterogeneity. NDVI is considered to
be a good indicator of soil moisture, rainfall, vegetation biomass and productivity, and neighborhood
greenness [28], which is widely used in the field of heat vulnerability to describe the vegetation of the
environment [13–15,18].

The LST data were derived from the MOD11A2 8-day product with 1 km resolution. We used the
images from July 4, 12, and 20, 2010. The image from July 28 was excluded because of errors and null
values. We calculated the mean LST for each pixel based on the three images and the arithmetic mean
for each jiedao.

The NDVI measures green vegetation abundance [29] for each 1 km pixel. We derived the NDVI
data from the MOD13A2 16-day product taken on July 12 and 28, and calculated their mean value.
Then, we calculated the arithmetic mean for each jiedao.

2.2.2. Jiedao Socioeconomic Conditions

Table 2 lists the heat vulnerability variables (and abbreviations) in this analysis, as well as
the data sources, time attributes, mean, and standard deviation of the data. We selected widely
recognized variables that characterized heat vulnerability from the literature. The demographic and
socioeconomic variables investigated included age, income, education, living alone, physical condition,
and air conditioners. We used average household income, literacy, number of high school graduates,
college graduates, people younger than 5 or older than 65 years old, people who live alone, and unhealthy
elderly people (older than 60) to describe the jiedao socioeconomic conditions. Unhealthy elderly
people were defined as people over 60 years old who considered themselves unhealthy during the
past month. We obtained data for all the indicators except for average household income from the
2010 national census, which was not surveyed during the census at the jiedao scale. The average
household income was only available at the district level, which is a scale larger than the jiedao.
To describe income variation among the jiedao, we estimated average household income for the jiedao
by combining district income with average rent for the jiedao. More details about the estimation can
be found in the study by Tu et al. [30].

From the perspective of residents, the most effective means of reducing the heat vulnerability of
residents is the use of air conditioners [31,32]. We included air conditioner ownership to represent an
adaptation to excess heat. We obtained the proportion of households with air conditioners for each
district and assigned that value to all the jiedao located within the district (Beijing Area Statistical
Yearbook 2011).
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Table 2. Categories, variables, sources, means, and standard deviations (STDs) of heat vulnerability data at the jiedao scale (n = 130).

Category Independent Variable Mean (range) STD Data Source

Demographic variables

Percentage of population ≥ 65 years of age (≥ 65) 10.06 (2.13–24.54) 3.98

Tabulation on the Population Census
of Beijing Municipality (2010)

Percentage of population < 5 years of age (< 5) 3.16 (1.32–5.72) 0.86
Percentage of the population below high school education (below HS) 35.98 (11.28–77.38) 12.59

Percentage of population with a college education or above (college or above) 37.23 (4.82–79.63) 13.76
Percentage of illiterate population (illiteracy) 1.18 (0.32–2.88) 0.58

Percentage of population who live alone (living alone) 9.36 (3.95–23.50) 3.60
Percentage of unhealthy population over 60 (unhealthy seniors) 15.51 (12.52–20.23) 2.96

Average income 1 (income) 29,340.01 (10,278.27–48,459.39) 8540.04

Air conditioners Number of air conditioners per 100 households (AC) 0.56 (0.00–1.00) 0.36 Beijing Area Statistical Yearbook 2011

Land cover The mean pixel-level (1 km*1 km) value of normalized difference vegetation
index (NDVI) 0.28 (0.03–0.70) 0.13

NDVI from Moderate-resolution
imaging spectroradiometer (MODIS

2) data (July 2010)

Land surface
temperature

The mean of pixel-level (1 km*1 km) land surface temperature (LST) value of
each jiedao 38.33 (32.95–40.77) 1.18 LST from MODIS data (July 2010)

1. Calculated from census and other data. 2. https://modis.gsfc.nasa.gov/.

https://modis.gsfc.nasa.gov/
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2.3. Heat Vulnerability Index

Although most of the current heat vulnerability studies used the PCA method, this paper hopes to
try to use the EWI method to evaluate the heat vulnerability and compare the results with the former.
There are two reasons for this: First, this method is convenient for evaluating different aspects of heat
vulnerability, and the meaning is easy to understand. Second, the calculation method is simple and
clear, it is easy to quickly know which aspect of the socioeconomic environment system is vulnerable,
and it is convenient for decision-making.

To remove the effect of the unit and reduce the impact from outliers, we calculated the Z scores of
the 11 heat vulnerability variables.

Z =
x− µ
σ

(1)

We adjusted the positive/negative signs of the indicators. According to the previous literature,
we assumed that the trend of average income, percentage of population with a college education or
above, NDVI, and number of air conditioners per 100 households were opposite to the trend of heat
vulnerability, so the data normalized by these four variables were reversed.

We considered a value within ± 0.25 STD of the mean value as the “average level” and assigned
it a score of 0. For each 0.5 STD away from the “average level”, the score increased/decreased by 1
depending on the direction. As a result, we generated the 11 variables into 11 indicators ranging from
−3 to 3 (Table 3). The higher the absolute value, the further it deviated from the average level.

Table 3. Rules for assigning values when calculating the heat vulnerability index (HVI).

Range Assigned Value

< −1.25 −3
−1.25 to −0.75 −2
−0.75 to −0.25 −1
−0.25 to 0.25 0
0.25 to 0.75 1
0.75 to 1.25 2

> 1.25 3

Then, we calculated the mean of the percentage of illiterate population, the percentage of the
population with below high school education, and the percentage of population with a college education
or above as one education indicator. The calculation used the following formula:

Z education = 1/3 Z Illiteracy + 1/3 Z Less than HS + 1/3 Z College or above (2)

Finally, we calculated the heat vulnerability index (HVI) as the mean value of the nine indicators,
including the education indicator and others. We denoted this HVI as the HVI-EWI in the following
text. The HVI-EWI ranges from −3 to 3, with a score of −3 indicating the lowest heat vulnerability and
3 indicating the highest heat vulnerability.

2.4. Analytic Methods

PCA is frequently used in heat vulnerability studies for its capacity to convert correlated variables
into linearly uncorrelated principal components and to reduce dimensions [13,15,18]. To rule out the
effects of the different units, before conducting the PCA we standardized all the variables. Then, we used
principal component analysis to reduce the number of variables and create independent components
in SPSSTM 23. Next, we use a varimax rotation to minimize the number of original variables that
loaded highly on any one factor and increase the variation among factors. For each factor resulting
from PCA, we assigned scores from −3 to 3 according to their distance from the average level, in a
similar way as described above. Finally, we calculated the mean value of all the factors of the HVI,
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named the HVI-PCA. The HVI-PCA has the same range as the HVI-EWI, with −3 indicating the lowest
heat vulnerability and 3 indicating the highest heat vulnerability. We visualized the two indices in
ArcGISTM 10.0.

3. Results

3.1. Spatial Pattern of Heat Vulnerability in Beijing

In the overall spatial pattern, both approaches indicated that the central area had higher heat
vulnerability than the surrounding areas (Figure 2). We visualized the heat vulnerability patterns
obtained by the two approaches, using natural breakpoints to classify heat vulnerability into five
levels. While both approaches indicated that the central area had higher heat vulnerability than the
surrounding areas, PCA resulted in a ring-like pattern (high in the central and low in the suburb),
whereas EWI revealed a north–south discrepancy (low in the north and high in the south) (see Figure 2).
Figure 2a shows the HVI-PCA pattern for the main urban area of Beijing. Using the natural breaks
method to classify these jiedao, we found that 14 of these had the highest HVI values (1.25–1.75).
The overall trend of HVI-PCA is higher at the center and lower at the periphery, and higher in the east
and lower in the west. The highest vulnerability jiedao can be found in Dongcheng, Xicheng, Chaoyang,
and Fengtai districts. The lowest vulnerability jiedao can be found in Haidian and Chaoyang districts.
Figure 2b shows the HVI-EWI pattern of heat vulnerability in the main urban area across different
jiedao. In general, the trend of HVI-EWI is higher in the center and lower in the periphery, and higher
in the south and lower in the north. Using the natural breaks method to classify these jiedao, we found
that 13 of these had the highest HVI values (0.86–1.37). The higher vulnerability mainly can be found
in Xicheng, Shijingshan, and Fengtai districts. The jiedao with the lowest HVI values are all located in
the Haidian district.
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Figure 2. Spatial pattern of heat vulnerability in Beijing assessed by principal component analysis
(PCA) approach (a) and equal-weighted index (EWI) approach (b).

Using the PCA evaluation results minus the EWI evaluation results, we obtained a difference map
between the two, as shown in Figure 3. Compared with the results estimated by the EWI approach,
the PCA results tended to overestimate the vulnerability of the central area and to underestimate the
vulnerability of the surrounding areas in the north, east, and south (Figure 3). The jiedao where the
PCA approach is more inclined to estimate higher results are concentrated in the southern part of
Haidian district and the northern part of Xicheng district, and those more inclined to estimate lower
results are concentrated in the eastern part of Chaoyang district.
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Figure 3. Spatial pattern of the difference between the heat vulnerability index (HVI) calculated using
the principal component analysis (PCA) and using the equal-weighted index (EWI) approach.

3.2. Comparing PCA and EWI

A principal component analysis and a varimax rotation yielded a list of factors. We included
the factors with initial eigenvalues larger than 1: the first factor included illiteracy, unhealthy seniors,
air conditioners, and income variables; the second factor included LST and NDVI; the third factor
included living alone and education; and the fourth factor included age. (Table 4).

The cumulative contribution of the four component eigenvalues was 77.50%; that is, the 77.5%
variance of the original indicators can be explained by these four common factors (see Table 5).
Among them, the first factor explained 32.80% of variance, followed by 22.70%, 12.57%, and 9.44% for
the second, third and fourth factors, respectively.

We explored the spatial distribution characteristics of each factor (Figure 4). The dominant
variables of the first factor are illiteracy, unhealthy seniors, air conditioners, and income. Figure 4a
shows the spatial pattern of the first factor at the jiedao scale. The jiedao with the highest score range
from 2 to 3, and are mainly distributed in the western part of our study area and the southern part of
the urban core area—the original Chongwen district and Xuanwu district. The lower scoring jiedao
are concentrated in the southeastern part of Haidian district and the northwestern part of Chaoyang
district. The dominant variables of the second factor are LST and NDVI. Figure 4b shows the spatial
pattern of the second factor on the jiedao scale. The jiedao with the highest scores range between 2
and 3, and are mainly distributed in the Haidian and Chaoyang districts. The jiedao with the lowest
scores range between –3 and –2, and are mainly concentrated in the Haidian and Chaoyang districts.
The dominant variables of the third factor are living alone, having less than high school education,
and having college education or above. Figure 4c shows the spatial pattern of the third factor on
the jiedao scale. The highest and lowest values for this factor are mainly concentrated in Haidian
district and Chaoyang district. The dominant variables of the fourth factor are age < 5 and ≥ 65.
Figure 4d shows the distribution of the fourth factor on the jiedao scale. Regarding this aspect, the
most vulnerable jiedao are mainly concentrated in the central part of the Chaoyang district, while the
lower scoring areas, which are less vulnerable regarding this aspect, are mainly distributed on the
edges of urban areas.
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Table 4. Variable weights and factor loadings for heat vulnerability variables for various factors based on data from 130 jiedao.

Factor 1: Illiteracy/
Unhealthy/AC/Income

Factor 2:
LST/NDVI

Factor 3: Living
Alone/Below

HS/College or Above

Factor 4:
<5/≥ 65

The Absolute Value
of the Variable

Weight

The Absolute Value
of the Normalized
Variable Weight

Illiteracy 0.387
(0.903)

−0.147
(−0.174)

0.056
(0.009)

0.131
(0.02) 0.427 0.119

Unhealthy
seniors

0.286
(0.683)

0.146
(0.403)

−0.005
(0.108)

0.122
(0.19) 0.549 0.153

AC −0.193
(−0.574)

−0.205
(−0.33)

−0.009
(0.056)

0.188
(0.271) 0.219 0.061

Income −0.193
(−0.531)

0.162
(0.407)

−0.055
(0.188)

0.158
(0.423) 0.072 0.020

LST −0.043
(−0.009)

0.486
(0.911)

−0.021
(0.155)

−0.177
(0.008) 0.245 0.068

NDVI −0.017
(−0.084)

−0.431
(−0.866)

0.112
(−0.079)

−0.022
(−0.224) 0.358 0.099

Living alone −0.126
(−0.268)

0.07
(−0.049)

−0.546
(−0.81)

0.273
(0.126) 0.329 0.091

Below HS 0.09
(0.346)

0.014
(−0.226)

−0.334
(−0.743)

−0.044
(−0.387) 0.274 0.076

College or
above

−0.18
(−0.544)

−0.027
(0.146)

0.352
(0.723)

−0.045
(0.274) 0.099 0.028

< 5 −0.035
(0.12)

0.074
(−0.121)

0.227
(−0.021)

−0.655
(−0.909) 0.389 0.108

≥ 65 0.224
(0.365)

−0.11
(0.125)

0.166
(0.5)

0.358
(0.609) 0.638 0.177

Note: The component score coefficient matrix (outside parentheses) is the weight of the variable in the corresponding factor. For example, Factor 1 = 0.387 * Illiteracy + 0.286 * Unhealthy
seniors – 0.193 * AC – 0.193 * Income. The rotated component matrix indicates (inside parentheses) how much the factor interprets each variable respectively. Extraction method: Principal
component analysis. Rotation method: Varimax with Kaiser normalization.
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Table 5. The number of extracted factors, eigenvalues, and percentages of variance explained.

Total Variance Explained

Com-ponent Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings

Total % of Variance Cumulative
% Total % of Variance Cumulative

% Total % of Variance Cumulative
%

1 3.61 32.80 32.80 3.61 32.80 32.80 2.54 23.05 23.05
2 2.50 22.70 55.50 2.50 22.70 55.50 2.15 19.56 42.61
3 1.38 12.57 68.07 1.38 12.57 68.07 2.06 18.74 61.35
4 1.04 9.44 77.50 1.04 9.44 77.50 1.78 16.15 77.50
5 0.70 6.40 83.90
6 0.52 4.71 88.62
7 0.48 4.41 93.02
8 0.30 2.71 95.73
9 0.24 2.17 97.90

10 0.20 1.83 99.73
11 0.03 0.27 100.00
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Figure 4. Spatial pattern of four factors for heat vulnerability using the PCA approach. Factor 1:
illiteracy/unhealthy/air conditioners/income (a); Factor 2: LST/NDVI (b); Factor 3: living alone/below
high school education/college education or above (c); Factor 4: population < 5/population ≥ 65 (d).

The actual value of the heat vulnerability index (HVI-PCA) synthesized by the above four heat
vulnerability factors ranged from −2 to 1.75; the average value was 0.094, and the STD was 0.87.
Correspondingly, the values for the HVI-EWI ranged from −2.33 to 1.37; the average was 0.0048,
and the STD was 0.78.

We also visualized the spatial patterns of indicators used in the EWI approach (Figure 5). Indicators
describing income, education, and unhealthy elderly population are characterized by high values in the
center of the city and low values in the periphery of the city. In contrast, the percentage of population
< 5 years of age presents a high value in the surrounding areas of the city and a low value in the city
center. The spatial pattern of the percentage of the population who live alone has a strong spatial
heterogeneity but does not reflect an obvious discrepancy in areas surrounding the center. The number
of air conditioners per 100 households varies from north to south, with more in the north and less in
the south. The pattern of population ≥ 65 years of age presents a ring-shaped, high-value area at the
edges of Dongcheng district and Xicheng district. The LST is higher in the center and the south of
the study area, and lower in the north of Haidian district. As expected, we found that income and
education had a similar distribution, and LST and NDVI had an opposite spatial pattern.



Remote Sens. 2019, 11, 2358 16 of 21Remote Sens. 2019, 11, x FOR PEER REVIEW 13 of 18 

 

 

(a) 

 

(b) 

 

(c) 

 
(d) 

 
(e) 

  
(f) 

 
(g) 

 
(h) 

 
(i) 

Figure 5. Spatial pattern of heat vulnerability variables in Beijing: (a) income; (b) percentage of the 

population under the age of five; (c) percentage of the population aged 65 and over; (d) education 

status; (e) percentage of persons living alone; (f) number of air conditioners per 100 households; (g) 

NDVI; (h) unhealthy elderly people over 60 years of age; (i) LST. Among them, education factor is 

composed of the percentage of the population that is illiterate (positive indicator), the percentage of 

the population with high school education (positive indicator), and the percentage of the population 

with college education and above (negative indicator). 

The main difference between the two approaches is that the weights of the indicators are 

different. The coefficients for the EWI approach are equal, while the PCA approach assigns different 

weights to each indicator during the generation of the factors (see Table 6). To present the difference 

between the two approaches more clearly, we compared the absolute values of the coefficients of the 

two approaches and normalized the absolute values of the coefficients of the PCA approach. The 

weights for education, the percentage of elderly people over 65 years old, and the percentage of 

unhealthy elderly people over 60 years old increased greatly. 

Comparatively, with the coefficients for the EWI approach, the weights for the above factors 

increased to 100.0%, 59.5%, and 37.3%, respectively; the weight of percentage of children under 5 

years old was nearly unchanged, decreasing by 2.7%; the weights for income, air conditioners, and 

LST significantly decreased by 82.0%, 45.2%, and 38.7%, respectively; and the weights for solitary 

living and NDVI variables decreased slightly by 17.7% and 10.5%, respectively (see Table 6). 

Figure 5. Spatial pattern of heat vulnerability variables in Beijing: (a) income; (b) percentage of the
population under the age of five; (c) percentage of the population aged 65 and over; (d) education status;
(e) percentage of persons living alone; (f) number of air conditioners per 100 households; (g) NDVI;
(h) unhealthy elderly people over 60 years of age; (i) LST. Among them, education factor is composed
of the percentage of the population that is illiterate (positive indicator), the percentage of the population
with high school education (positive indicator), and the percentage of the population with college
education and above (negative indicator).

The main difference between the two approaches is that the weights of the indicators are different.
The coefficients for the EWI approach are equal, while the PCA approach assigns different weights to
each indicator during the generation of the factors (see Table 6). To present the difference between the
two approaches more clearly, we compared the absolute values of the coefficients of the two approaches
and normalized the absolute values of the coefficients of the PCA approach. The weights for education,
the percentage of elderly people over 65 years old, and the percentage of unhealthy elderly people
over 60 years old increased greatly.

Comparatively, with the coefficients for the EWI approach, the weights for the above factors
increased to 100.0%, 59.5%, and 37.3%, respectively; the weight of percentage of children under 5 years
old was nearly unchanged, decreasing by 2.7%; the weights for income, air conditioners, and LST
significantly decreased by 82.0%, 45.2%, and 38.7%, respectively; and the weights for solitary living
and NDVI variables decreased slightly by 17.7% and 10.5%, respectively (see Table 6).
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Table 6. Comparison of coefficients between principal component analysis (PCA) and equal-weighted
index (EWI) approaches.

Indicator
The Absolute

Value of the EWI
Coefficient

The Absolute Value
of the Normalized

PCA Coefficient

The Absolute
Value of the PCA

Coefficient

Percentage
of Change

Education 0.111 0.222 0.800 1.001
Population ≥ 65 0.111 0.177 0.638 0.595

Unhealthy seniors 0.111 0.153 0.549 0.373
Population < 5 0.111 0.108 0.389 −0.027

NDVI 0.111 0.099 0.358 −0.105
Living alone 0.111 0.091 0.329 −0.177

LST 0.111 0.068 0.245 −0.387
AC 0.111 0.061 0.219 −0.452

Income 0.111 0.020 0.072 −0.820

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser normalization.

4. Discussion

4.1. Spatial Patterns, Similarities, and Divergence of Heat Vulnerability in Beijing

According to our study, the spatial heterogeneity of heat vulnerability in Beijing is very strong
(Figure 3), which is consistent with many studies on urban heat vulnerability [11,13–15,17,18]. This study
used two approaches to assess the spatial pattern of heat vulnerability in Beijing. The results show that
the central part of the city is a region with high heat vulnerability, which is consistent with most of the
existing studies on urban heat vulnerability [13,14,18]. Among the six main urban areas in Beijing,
Dongcheng district and Xicheng district have higher heat vulnerability, and Chaoyang district and
Haidian district have lower heat vulnerability. These results are similar to those of Zhan and Wang [33].
In the center jiedao of Beijing, LST values are higher, NDVI values are lower, and the proportion of
elderly and unhealthy older people are higher. This shows that these streets are indeed worthy of more
attention from policymakers, who should formulate strategies that consider the actual situation of the
jiedao to improve the well-being of residents.

4.2. Reasons for Differences between the PCA Approach and the EWI Approach

Evaluating heat vulnerability using the PCA and EWI approaches, we found that the choice of
approach had a considerable impact on the spatial patterns of estimated heat vulnerability. According to
our results, weighting caused significant differences in the results, which is in contrast with the results
obtained by Räsänen [34], but consistent with those of Wiréhn et al. [35] and Reckien [36]. PCA produced
higher heat vulnerability in the central city and lower heat vulnerability in the outskirts compared
with EWI. PCA produced a pronounced ring-like gradient from the center to the edges, and more
spatial heterogeneities.

The resulting patterns of heat vulnerability varied among different studies, because the weights of
the variables were different when being included in the model. The reason for the differences in weights
is that the PCA approach forms a linear combination of some variables to reflect the information for
most of the variables by reducing the dimensionality of the data. Variables are added with different
weights in the process of forming a common factor. Based on the hypothetical variable selection,
we can see in Table 6 that the weight of education in the PCA approach is relatively large; in addition,
the percentage of the elderly population over 65 years old and the percentage of unhealthy elderly
population over 60 years old are also larger, and the two partially overlap in the connotation, so under
the premise that both variables are included in the calculation, the weight of the elderly population is
also increased. That is, using the PCA calculation approach, if the number of indices expressing the
same aspect increases, the variable of this aspect will inevitably occupy a larger weight in the later factor
synthesis (Table 6). In the EWI approach, we assumed that different variables represented different
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aspects of heat vulnerability, and variables were treated equally during evaluation. The absolute values
of the coefficients of the two approaches are compared in Table 6. This means that for many scholars
performing heat vulnerability assessment, the practice of incorporating many variables into the model
for dimensionality reduction will have an impact on the results. This reminds us that in future research
on heat vulnerability assessment, in the selection of indicators, in addition to the availability of data,
we also need to analyze the number of indicators for each category based on actual local conditions
and epidemiology. It is important to study the extraction of fewer heat vulnerability variables that are
more representative.

4.3. Limitations of This Study

First, limited by the availability of data, two of the 11 heat vulnerability variables selected in this
study (number of air conditioners per 100 households and unhealthy elderly people over 60 years
old) were district scale variables; the remaining nine were jiedao scale variables. In this study, we
assigned the district scale values of these two variables to the jiedao scale. The difference in the data
scales may have had an impact on our results because these two variables lack spatial heterogeneity in
urban areas.

Second, the overall indicators of this study are not particularly rich, which may limit the results
of the PCA to some extent. For instance, in terms of economic status, this study only used average
income data but did not include poverty data. In terms of health, it is difficult to obtain data such as
mortality or prevalence during high temperature events on a jiedao scale. Therefore, this study used
the percentage of unhealthy seniors over the age of 60 to replace health indicators.

4.4. The Implications for Future Research and Urban Planning

There are some commonalities in the jiedao with high heat vulnerability that deserve our attention.
At the same time, the dominant variables of the jiedao with the highest heat vulnerability are not the
same. For instance, Tianqiao jiedao in the south of Xicheng district has the highest heat vulnerability
using the PCA approach because the social vulnerability factor has the highest score, specifically
because the percentage of unhealthy elderly people and the percentage of illiterate people are the
highest. For this type of jiedao with high heat vulnerability, policymakers should focus on the
adaptability to high temperatures and heat waves, and access to high-temperature information for
unhealthy elderly people. As another example, the Dashilan jiedao in Xicheng district has the highest
heat vulnerability when assessed using the EWI approach. The surface temperature is the highest in the
jiedao, and the proportion of unhealthy elderly people and illiterate people is the highest. For this type
of jiedao with high heat vulnerability, in addition to focusing on high temperature warning channels,
it is also necessary to optimize the living environment. Specifically, the supply of green space should be
increased or optimized so that public green space can better play the role of lowering the temperature
and regulating the microclimate. This study measures the spatial pattern of heat vulnerability on the
jiedao scale and provides decision makers with a scientific basis for targeted policy design for effective
heat mitigation and intervention on a certain scale.

The spatial heterogeneity of heat vulnerability within the city is also worthy of our attention, for
example in the Chaoyang district in the southern part of the study area (see Figure 3a). The jiedao in
Chaoyang district are spatially adjacent to each other, but the heat vulnerability is distributed across
four different levels, indicating that the difference in heat vulnerability is not only reflected in the
gradient differences between urban and suburban areas. Within urban areas, heat vulnerability also
has large spatial heterogeneity, so the corresponding operational policy recommendations should not
only be made at the district scale but should also extend to the jiedao scale.

The current research on heat vulnerability was limited by the availability of health data, as only a few
studies have verified the effectiveness of heat vulnerability assessment [15,37,38]. Similarly, our current
work does not have appropriate health data at the jiedao scale, so the comparison of the two approaches
could also help to adjust the weight of the heat vulnerability assessment in the future by comparing
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it with the corresponding health data. In the future, individual health data should be collected or
obtained to verify the assessment of heat vulnerability, which will in turn help in optimizing heat
vulnerability assessments and early warning systems to reduce health risks for vulnerable populations
in certain regions, and subsequently to improve human well-being.

5. Conclusions

According to our study, both approaches indicated that the central area had higher heat
vulnerability than the surrounding areas because of higher levels of heat exposure and more elderly
residents. PCA resulted in a ring-like pattern (high in the central and low in the suburb) and EWI
revealed a north–south discrepancy (low in the north and high in the south).

This study reveals the weight changes of variables and their impact on the PCA and EWI
approaches when assessing heat vulnerability. The PCA approach determines different weights
to the variables in the process of forming the common factors by reducing the dimensionality of
the data. This study suggests that when the index is evaluated, if the value of a certain category
indicator increases, the PCA approach will inevitably increase the total weight for certain indicators.
Therefore, in future studies, scholars should optimize the representativeness of indicators and the
number and proportion of different types of indicators. We argue that although PCA provided a useful
tool to combine a large number of indicators into a few indices, the process was based solely on the
statistical characteristics of the data. Our study suggests that results from a single measure of HVI
need to be interpreted with caution, as different HVI indicators can lead to quite different results that
may reflect distinct aspects of the complex phenomenon of heat vulnerability.
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