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Abstract Clouds and aerosols play essential roles in regulating surface incident solar radiation (Rs). It
has been suggested that the increased aerosol loading over China is a key factor for the decadal variability
in Rs and can explain the bias in its trend from reanalyses because the reanalyses do not include the
interannual variability of aerosols. In this study, we compare the Rs derived from sunshine duration at 2,400
weather stations in China and that from five reanalyses from 1980 to 2014. The determining factors for the
biases in the mean values and trends of Rs from the reanalyses are examined, with the help of Rs and the
cloud fraction (CF), from satellite and 2,400 weather stations. Our results show that all reanalyses
overestimate the multiyear Rs by 24.10–40.00 W/m2 due to their underestimations of CF, which is more
obvious in southern China. The biases in the simulated CF in the reanalyses can explain the biases in Rs by
55–41%, and the bias in clear‐sky surface solar radiation (Rc), which is primarily due to biases in aerosol
loading, can explain 32–9% of the bias in Rs. The errors in the trend of the simulated CF can explain the
errors in the Rs trends in the reanalyses by 73–12%, and the trend errors in the Rc can explain 43–30% of the
trend error in Rs. Our study suggests that more work is needed to improve the simulation of aerosols, clouds,
and aerosol‐cloud‐radiation interactions in the reanalyses.

1. Introduction

Surface incident solar radiation (Rs) is a key component of the surface energy budget. It drives the global cli-
mate system and the hydrological and carbon cycles (C. Dorno, 1920; Roderick & Farquhar, 2002; Sedlar,
2018; Sellers et al., 1990; Wang et al., 2017). Widespread solar radiation measurements have shown that
Rs has significant decadal variability, which is known as global dimming (from the 1950s to 1980s) and bright-
ening (since the mid‐1980s, Wild, 2009). The variation in Rs is closely related to climate change and global
warming (Ruosteenoja & Raisanen, 2013). This has been regarded as an important driver of the observed
decadal variability of hemisphere and global mean surface temperature during the last century
(Ramanathan et al., 2005; Ruckstuhl et al., 2008; Wang & Dickinson, 2013; Wild, 2009).

Clouds and aerosols have been considered themain contributors to the variability in Rs (Bodas‐Salcedo et al.,
2014; Folini & Wild, 2011; Ghan et al., 2012; Pyrina et al., 2015; Tang et al., 2012; Wang et al., 2012). It is
argued that the reduction in aerosol loading is the primary factor of Rs brightening from 1980 to 2014 over
Europe (Nabat et al., 2015). However, studies based on satellite retrievals have found that the reason for
the increasing trend in Rs from 1992 to 2015 over Europe is the decrease in the cloud fraction (CF,
Pfeifroth et al., 2018). Augustine and Dutton (2013) found that the increasing trend in Rs is mainly due to
a decrease in CF over the United States from 1996 through 2011.

Changes in aerosol loading have been reported to be the primary cause of variations in Rs over China (Che
et al., 2005; J. Li et al., 2018; Liang & Xia, 2005; Qian et al., 2015; Xia, 2010). For example, Li et al. (2018) find
that aerosol loading was the most likely major cause of variations in Rs from 2005 to 2015 over China, espe-
cially for the northeast and southern parts of China. In contrast, Tang et al. (2017) conclude that clouds and
the interactions between clouds and aerosols are the main reasons for the variation in Rs.

The above‐mentioned studies on the attributions of the trend in Rs to clouds and aerosols are primarily qua-
litative due to limited numbers of surface measurements of Rs, CF, and aerosol loading. Observations of Rs

are sparsely distributed and have limited spatial and temporal coverage (Wild, 2016). Moreover, the solar
radiation measurements over China suffer from problems such as sensitivity drift and instrument
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replacement (Wang, 2014; Wang et al., 2015; Yang et al., 2018; Zhang & Lu, 1988, 1990). Sunshine duration
(SunDu) records have been suggested that can be used to reconstruct long‐term Rs with comparatively large
spatial coverage (He et al., 2018; Matuszko, 2014; Sanchez‐Lorenzo et al., 2008; Wang et al., 2015b; Yang
et al., 2006). Satellite‐derived Rs products also provide an estimate of Rs (Feng & Wang, 2018b; Li et al.,
2017; Ma et al., 2015). More importantly, satellite data provide CF in addition to the ground‐based manual
observations of CF.

Compared with observations and satellite data, the Rs reanalysis data have complete spatial and temporal
coverage by combining observations and forecast models. The radiative fluxes from the reanalyses are widely
used as forcing data in many climate models (Essou et al., 2017). However, Rs reanalyses contain substantial
biases (Slater, 2016; Wang et al., 2015; Wu et al., 2015) due to the uncertainties in clouds and aerosols in the
reanalyses (Fujiwara et al., 2017). Complete knowledge of the interactions among clouds, aerosols and radia-
tion, and the related parameterizations in the climate models or reanalyses can help to reduce the uncer-
tainty in predicting potential future climate changes, especially at regional scales (Loew et al., 2016; Zadra
et al., 2018).

In this study, we compare the Rs, CF from five current reanalyses with field observations, satellite retrievals,
and the satellite and reanalyses‐derived clear‐sky surface solar radiation (Rc), which is closely related to aero-
sols, by analyzing the climatologies, spatial patterns, seasonal variations, and trends in Rs, CF, and Rc from
these reanalyses. Second, we evaluate the relationship between the bias in Rs and those in the CF and Rc.
These analyses help to figure out the determining factors of monthly to decadal variability in surface solar
radiation in the reanalysis system and observations in China from 1980 to 2014.

2. Data and Methodology
2.1. Ground‐Based Observations

SunDu from 1980 to 2014 are collected from approximately 2,400 China Meteorological Administration
(CMA) weather stations (http://data/cma/cn/data, Figure 1). These SunDus are then used to calculate the
monthly mean Rs following the method of the revised Ångström‐Prescott equation (1, Wang, 2014; Wang
et al., 2015; Yang, Koike, & Ye, 2006).

Rs

Rc
¼ a0 þ a1

n
K
þ a2

n
K

� �2
(1)

Rc ¼ ∫I·Tb· sin hð Þ·dt þ ∫I·Td· sin hð Þ·dt (2)

where n represents the measured sunshine duration and K represents the theoretical value of the sunshine
duration. a0, a1, and a2 are determined following themethod ofWang (2014). Rc is the daily total solar radia-
tion under clear sky. I is solar irradiance at the top of the atmosphere. Tb and Td denote atmospheric trans-
mittance for direct solar radiation and diffuse solar radiation. h is the solar elevation.

Existing studies (Manara et al., 2015; Sanchezlorenzo et al., 2013; Tang et al., 2011; Wang et al., 2012; Yang
et al., 2018) have shown that SunDu‐derived Rs is a reliable Rs proxy data set at time scales ranging from
monthly to decadal that can reflect the impacts of aerosols and clouds on Rs over China. SunDu data are rela-
tively widely distributed and have a long time record, which extends from the late nineteenth century to the
present (Sanchez‐Lorenzo et al., 2009; Wild, 2009).

Moreover, Rs measurements such as pyranometers require careful calibrations (Wood et al., 2015; Yang
et al., 2018) due to the thermal offsets (Philipona, 2002; Zo et al., 2017) and the directional response errors
(Myers et al., 2002). Moreover, Rs measurements are sparsely distributed in China. In spite of uncertainty
in short time scales, SunDu‐derived Rs data have their advantage in quantifying annual to decadal variability
of Rs (Feng & Wang, 2018a; Wang, 2014).

We also collected synoptic observations of the total CF from 2,400 weather stations, which are collocated
with the SunDumeasurement sites. Daily observational total cloud amounts (in tenths), which are observed
by human eyes 4 times a day (2:00, 8:00, 14:00, and 20:00) based on the specifications for surface
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meteorological observation, are collected and then averaged to get monthly mean observed cloud amount
and are linearly converted into the percentage scale to enable comparison with the reanalysis data.

2.2. Satellite Data

Rs data from the latest release of the Clouds and the Earth's Radiant Energy System energy balanced and
filled product (CERES EBAF) surface product (edition 4) and cloud amounts from the CERES Synoptic
(CERES SYN1deg) edition 4 product are collected in this study (Kato et al., 2018). CERES is a radiometer
on board the Tropical Rainfall Measuring Mission, Terra, Aqua, and Suomi National Polar‐orbiting
Partnership satellites and National Oceanic and Atmospheric Administration‐20. CERESmeasures three fil-
tered radiances, including shortwave (0.3–5 μm), total (0.3–200 μm), and window (8–12 μm).

The CERES‐EBAF product provides global monthly mean Rs data. The input cloud properties for CERES
EBAF, such as optical thickness and emissivity from Moderate Resolution Imaging Spectradiometer
(MODIS) and geostationary satellites, are constrained by a cloud profiling radar, Cloud‐Aerosol Lidar and
Infrared Pathfinder Satellite Observations detectors, and CloudSat. MODIS collection 5‐derived aerosol data
are used as input data for the CERES EBAF product. Rs of CERES EBAF is produced with a radiative transfer
model constrained by CERES observations at the top of the atmosphere (Kato et al., 2018).

Compared with the previous version of CERES EBAF (Ed2.8), the newly released product (version 4.0) has
extensive improvements in the inputs and algorithms. For example, the newly released version 4.0 product
eliminated the discontinuities in the temperature and humidity time series at the beginning of 2008.
Furthermore, the biases in temperature and specific humidity from the Goddard Earth Observing System
(GEOS) version 5.4.1 reanalysis are corrected using atmospheric infrared sounder data. All the improve-
ments help to improve its capability in quantifying long‐term trend of Rs. The uncertainties of CERES
EBAF data, reported by Kato et al. (2018), in all‐sky global annual mean Rs is 4 W/m2. The new CERES pro-
ducts are supplemented with geostationary satellite data between the twice‐per‐day passes to document
diurnal variation of solar and IR irradiance overcoming a major flaw in polar orbiter (i.e., CERES) data.

Existing studies (Feng & Wang, 2018b; Ma et al., 2015; Wang et al., 2015) also show that the CERES EBAF
surface product provides reliable estimations of monthly Rs. Feng andWang (2018a) find that CERES EBAF
has a bias of 7.94 W/m2 compared with observation and 7.53 W/m2 compared with SunDu‐derived Rs from
2000 to 2014. The comparison results of CERES EBAF, GEWES‐SRB, and ISCCP‐FD‐SRF from Li, Xin, and

Figure 1. The 2,400meteorological sites used in this study. The based hillshade map was produced by an elevation map of
China using the global digital elevation model (DEM) derived from the Shuttle Radar Topography Mission 30 (SRTM30)
data set.
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Peng (2017) show that CERES EBAF have lowest root‐mean‐square error (RMSE, 14.73 W/m2) compare
with solar radiation measurements in China.

2.3. Reanalysis Data

Five of the latest global reanalysis products, including the European Centre for Medium Range Weather
Forecasting Reanalysis‐Interim (ERAI), Japanese 55‐year reanalysis (JRA55), Climate Forecast System
Reanalysis (CFSR), Modern‐Era Retrospective Analysis for Research and Applications version 2
(MERRA2) andMERRA, were collected in this study. The brief descriptions of these five reanalyses are sum-
marized in Table 1. It is necessary to note that the time span of the CFSR is from 1979 to 2010. We use its
successor, version 2 (CFSR2), to provide the subsequent CFSR estimates from 2010 to 2014 according to pre-
vious studies, in which CFSR2 has been used as a continuation of CFSR due to few changes in the physical
models (Suranjana Saha et al., 2014). ERAI does not provide a Rc product, and we calculate the Rc from its
albedo and surface net solar radiation products for a clear sky.

These five reanalyses do not assimilate any Rs data from conventional or satellite observations. Rs derived
from these reanalyses is calculated using radiation transfer models. Specifically, the ERAI used a six‐band
shortwave parameterization model developed by Fouquart and Bonnel (1980). JRA55 used a shortwave
parameterization model developed by Briegleb (1992). The shortwave parameterization of the CFSR is based
on the Rapid Radiative Transfer Model for General Circulation Models developed by Clough et al. (2005).
Both MERRA2 and MERRA applied the Goddard climate and radiation package (CLIRAD) for shortwave
parameterization (Fujiwara et al., 2017).

The simulation of the CF in reanalyses falls into two categories: (1) the diagnostic scheme and (2) the prog-
nostic scheme. CF in the diagnostic scheme is parameterized by an empirical function of relative humidity or
a probability density function (PDF) of moisture variability. In the prognostic scheme, the CF is calculated
using a prognostic equation of the sources and sinks of cloud areas. For the reanalyses, the CF from the ERAI
is calculated using a prognostic scheme (Berrisford et al., 2009). CFSR uses a diagnosed scheme for CF com-
putation (Saha et al., 2006). JRA55 uses a PDF‐based diagnosed cloud scheme (Smith, 2010). MERRA applies
a prognostic cloud scheme (Bacmeister et al., 2006), and MERRA2 updates its atmospheric model, which
results in increasing cloud condensation that has a substantial impact on CF simulation (Molod et al., 2015).

ERAI, CFSR, MERRA2, and MERRA use a maximum‐random overlap scheme to depict different vertical
layers with cloud overlap, whereas the JRA55 uses a random overlap scheme. Climatological aerosol values
are used in the ERAI, CFSR, JRA55, and MERRA. MERRA2 uses analyzed aerosol values (Randles et al.,
2017), which are produced by the Global Ozone Chemistry Aerosol Radiation and Transport model, and
assimilates satellite‐derived Aerosol Optical Depth (AOD) values and Aerosol Robotic Network AOD values.

2.4. Methods

We assess the Rs values and CF, from the reanalyses by comparing themwith surface observations and satel-
lite retrievals. Both satellite retrievals and field observations are used as all‐sky Rs reference. Clear‐sky sur-
face solar radiation (Rc), which is closely related to atmospheric aerosol loading, can be calculated with input
from reanalyses and satellite. Rc from reanalyses were also compared with satellite retrievals to illustrate the
impact of aerosols.

Table 1
Summary of the Parameterizations and Variables in the Reanalyses

Model Spatial resolution Assimilation scheme Reference

ERAI IFS Cycle 31r2 TL255 (~79 km) 4D‐Var Dee et al. (2011)
JRA55 JMA GSM TL319 (~55 km) 4D‐Var Kobayashi et al. (2015)
MERRA2 GEOS 5.12.4 0.5° × 0.625° 3D‐FGAT Gelaro et al. (2017)
MERRA GEOS 5.0.2 0.5° × 0.667° 3D‐FGAT Rienecker et al. (2011)
CFSR NCEP GFS 0.3125° × 0.3125° 3D‐FGAT S. Saha et al. (2010) and Suranjana Saha et al. (2014)

Note. The 3D‐Var (4D‐Var) is the three‐dimensional (four‐dimensional) variational assimilation system, and FGAT is the first guess at the appropriate time. GSM
is the global spectral model. MERRA = Modern‐Era Retrospective Analysis for Research and Applications; JRA55 = Japanese 55‐year reanalysis; ERAI =
European Centre for Medium Range Weather Forecasting Reanalysis‐Interim; CFSR = Climate Forecast System Reanalysis.
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Figure 2. Spatial distribution of multiyear meanmonthly surface solar radiation (Rs), cloud fraction (CF), and the surface solar radiation under clear‐sky condition
(Rc) from 2000 to 2014. The first line (a, h, o) shows the observed multiyear mean monthly Rs, CF and CERES EBAF‐derived Rc from 2000 to 2014; the rest of
the lines show the results of the multiyear mean monthly Rs, CF, and Rc from the reanalyses minus the multiyear mean monthly Rs, CF, and Rc from the
observations and CERES data. The probability density plot represents the distribution of multiyear mean monthly Rs, CF, and Rc (a, h, and o subplots) and
the distribution of the CERES and reanalyses corresponding biases (rest subplots) in each subplot, and the values are consistent with the colorbar range.
CERES EBAF = Clouds and the Earth's Radiant Energy System energy balanced and filled product.
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To eliminate the impact of surface observations distribution inhomogeneities, we interpolate the field
observations into 1° × 1° grid cells using the area‐weighted averaging method (Du et al., 2018). To be
specific, we divide the study region into 1° × 1° grids covering China and assigned all sites to the grids.
For a certain grid contained more than one site, the area‐weighted average of these sites are calculated as
this grid value. For consistency, all data are transformed into 1° × 1° grids based on the bilinear
interpolation method.

The spatial distributions of the multiyear mean Rs, CF, and Rc over China, along with the biases in these
parameters from the reanalyses, are analyzed in this study. The linear trends in Rs, CF, satellite‐derived
Rc, and Rc from reanalyses are calculated by the least squares method. The trends are evaluated using obser-
vations and satellite retrievals. To ensure consistent comparisons, all the trends are also calculated by using
1° × 1° grids data including sites observation. To quantify the impacts of CF on all‐sky Rs error between the
reanalysis data and observations, correlation coefficients (R) of linear regression plots between CF error and
all‐sky Rs error are calculated. It is essential to assess the sensitivity of error in simulated Rs to CF and Rc.
Therefore, we calculated a polynomial regression model to analyze the sensitivity of Rs to the biases in the
CF and Rc

ΔRs ¼ βiΔxi þmþ ε (2)

where βi represents the sensitivity, which is the slope of the linear regression line between the bias in Rs

plotted against the bias in xi. Δxi represents the bias in the annual anomaly for the related variable (e.g.,
CF and Rc). ΔRs represents the bias in the annual anomaly Rs, and m and ε represent the constant and

Table 2
Evaluations of the Surface Incident Solar Radiation (Rs), Cloud Fraction (CF), and Surface Incident Solar Radiation Under
Clear Condition (Rc) From the Reanalyses Using 2,400 Field Observations and the CERES EBAF Data (CERES)

Typ Ref R2 Bias MAB Std RMSE

CERES Rs Obs 0.96 8.22 13.43 9.90 15.71
ERAI Rs Obs 0.89 24.13 28.09 15.96 30.94
JRA55 Rs Obs 0.93 34.02 35.33 14.66 37.09
CFSR Rs Obs 0.89 27.78 31.90 18.40 35.15
MERRA2 Rs Obs 0.89 40.02 41.48 16.92 43.20
MERRA Rs Obs 0.87 38.35 39.78 18.42 42.00
ERAI Rs CERES 0.89 16.38 20.66 16.11 24.83
JRA55 Rs CERES 0.91 26.26 28.49 16.81 32.58
CFSR Rs CERES 0.89 20.18 25.91 19.25 30.62
MERRA2 Rs CERES 0.87 32.19 34.30 18.81 38.63
MERRA Rs CERES 0.85 30.39 33.09 20.71 38.12
ERAI CF Obs 0.67 −0.09 0.11 0.08 0.12
JRA55 CF Obs 0.62 −0.18 0.19 0.08 0.17
CFSR CF Obs 0.64 −0.03 0.09 0.08 0.13
MERRA2 CF Obs 0.47 −0.13 0.15 0.11 0.15
MERRA CF Obs 0.53 −0.11 0.14 0.10 0.12
ERAI CF CERES 0.70 −0.09 0.11 0.07 0.12
JRA55 CF CERES 0.64 −0.19 0.19 0.07 0.21
CFSR CF CERES 0.66 −0.03 0.08 0.08 0.10
MERRA2 CF CERES 0.53 −0.13 0.15 0.09 0.17
MERRA CF CERES 0.56 −0.11 0.13 0.09 0.15
ERAI Rc CERES 0.96 1.19 20.42 17.57 24.96
JRA55 Rc CERES 0.98 0.00 10.45 9.10 12.70
CFSR Rc CERES 0.98 16.62 22.46 14.65 25.47
MERRA2 Rc CERES 0.99 7.27 10.42 8.99 12.75
MERRA Rc CERES 0.99 1.86 10.36 9.58 12.61

Note. All statistics are calculated by the original values. MAB, Std, and RMSE represent the mean absolute
bias, standard deviation, and root‐mean‐square error, respectively. CERES EBAF = Clouds and the Earth's Radiant
Energy System energy balanced and filled product; MERRA = Modern‐Era Retrospective Analysis for Research
and Applications; JRA55 = Japanese 55‐year reanalysis; ERAI = European Centre for Medium Range
Weather Forecasting Reanalysis‐Interim; CFSR = Climate Forecast System Reanalysis.
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residual, respectively. The coefficient of determination (R2) of those linear plots is used to determine the
degree to which Δxi explain the variability of ΔRs. The Rs trend errors are calculated as follows:

δ ¼ βiΔTxi

ΔTRs

×100% (3)

where δ represents the sensitivity in the trend error andΔTxi represents the trend error in the annual anom-
aly for the related variable (e.g., CF and Rc).ΔTRs represents the trend error in the annual anomaly Rs, and βi
is calculated using equation (2). The national mean sensitivity in the trend error is calculated by the mean of
absolute values.

3. Results
3.1. Multiyear Mean Rs, CF, and Rc Over China

Figure 2 shows the multiyear means of Rs, CF, and Rc and their biases in the reanalyses from 2000 to 2014.
Based on the field observations, Rs is higher in Tibet and western China, with an approximate range of

Figure 3. Seasonal variations in the surface solar radiation (Rs), cloud fraction (CF), and the surface solar radiation
under clear‐sky condition (Rc). The first column (a, c, and e) shows the national mean values for each month using all
site data. The second column (b, d, and f) shows the relative bias for each month. The reference for the Rc data is
calculated using the CERES EBAF data. CERES EBAF = Clouds and the Earth's Radiant Energy System energy balanced
and filled product.
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180–300 W/m2, and lower in eastern China and southern China, ranging from approximately 120 to
180 W/m2. The observed CF generally exhibits a reversed spatial pattern, with high values in southern
China (0.6–1) and low values in northern China (0.4–0.6). Rc over the Tibetan Plateau (300–340 W/m2) is

Figure 4. Seasonal variations in the relative bias in zonal mean surface solar radiation (Rs), cloud fraction (CF), and the
surface solar radiation under clear‐sky condition (Rc). The horizontal axis represents months, and the vertical axis
represents latitude. The reference data for Rs and CF are based on the observed data, and the Rc reference data are
calculated using the CERES EBAF data. CERES EBAF = Clouds and the Earth's Radiant Energy System energy balanced
and filled product.
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Figure 5. Spatial distributions of monthly anomaly trends (per decade) of surface solar radiation (Rs), cloud fraction (CF),
and the surface solar radiation under clear‐sky condition (Rc) from 2000 to 2014. The first line (a, h, o) shows the
monthly anomaly trends (per decade) of the observedRs, observed CF, and CERES EBAF‐derivedRc from 2000 to 2014; the
rest of the lines show the results of the monthly anomaly trends (per decade) of Rs and CF from the reanalyses minus
those of Rs, CF, and Rc from the observations. Mann‐Kendall analysis are used to establish the significance of trends.
The black dots on the maps represent significant trends. The probability density plot embedded in each subplot is the same
with Figure 2 but stands for the distribution of monthly anomaly trends (a, h, and o subplots) and the distribution of
monthly anomaly trends bias of the CERES and reanalyses (rest subplots). CERES EBAF=Clouds and the Earth's Radiant
Energy System energy balanced and filled product.
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larger than that over other regions of China (180–260W/m2, Figure 2), and the variation in Rc in the Tibetan
Plateau is small due to its high altitude, low aerosol loading and water vapor concentration, not to mention
the low value center for total column ozone over the Tibetan Plateau (Zhou et al., 2006).

Rs is estimated by ground observations, and the CERES EBAF shows good agreements, with a low mean
absolute bias (MAB) = 13.43 W/m2, R2 = 0.96, and RMSE = 15.71 W/m2. The biases in CERES EBAF show
a nearly homogeneous spatial distribution (Figure 2). These good agreements can also be seen the CF from
the CERES EBAF data. Using field observations as a reference, all five reanalyses significantly overestimate
the multiyear mean Rs over China as follows: ERAI, JRA55, CFSR, MERRA2, and MERRA with MAB equal
to 28.09, 35.33, 31.90, 41.48, and 39.78 W/m2, respectively (Table 2). Correspondingly, CF are underesti-
mated by five reanalyses as follows: ERAI, JRA55, CFSR, MERRA2, and MERRA with MAB equal to 0.11,
0.19, 0.09, 0.15, and 0.14, respectively, especially in the Sichuan basin (103–108°E, 28–32°N). The Rc MAB
values for ERAI, JRA55, CFSR, MERRA2, and MERRA are as follows: 20.42, 10.45, 22.46, 10.42, and 10.36
W/m2, respectively. Similar results can also be found in the distribution diagrams of Figure 2.

Reanalyses Rs display larger relative biases in winter and early spring than those in other seasons (Figure 3).
The zonal mean relative biases in Rs, CF, and Rc are shown in Figure 4. The spatial patterns of the relative
bias in Rs further indicate that large biases in winter and spring mainly occur in the area between 25 and
30°N. The relative bias in the CF shows an opposite spatial pattern compared with that in Rs, especially
via MERRA and MERRA2. The Rc estimated by the reanalyses exhibits an overall low relative bias for
different seasons.

3.2. Trends of Rs, CF, and Rc Over China

The trends in Rs, CF, and Rc over China from 2000 to 2014 and the corresponding biases via the satellite
and reanalyses are shown in Figure 5. Generally, observed Rs shows a national mean trend of −0.89
W/m2 per decade (Table 3). The observed CF shows an overall increasing trend (0.02 per decade). The
national mean decreasing trend in Rs and the national mean increasing trend in CF can also be seen dur-
ing the period of 1980–2014. In spatial terms, most of China shows a slight decreasing trend in Rs

(Figure 5). The increasing trend in Rs is comparatively high in southwest China. Conversely, the increas-
ing trend in the CF can be seen in many parts of China, except in southwest China. Based on the CERES
EBAF data, the Rc shows a decreasing trend in eastern China and an increasing trend in north China.
Moreover, the distribution diagrams of Figure 5 indicate that reanalyses have more positive Rs trend bias
and negative CF trend bias. Based on the CERES EBAF data, the national mean trend in Rc from 2000 to
2014 is −0.88 W/m2 per decade.

Compared with the reanalyses, the CERES EBAF shows a more consistent national mean Rs trend and CF
trend with those of the ground observations (Table 3). All reanalyses show poor performance in simulating

Table 3
Statistical Summary of the Linear Trends (10 years) in the Monthly Anomaly Surface Solar Radiation (Rs), Cloud Fraction (CF), and the Surface Solar Radiation
Under Clear‐Sky Condition (Rc) Anomalies Given the National Mean Over China

2000–2014 1980–2014

Rs CF (tenfold) Rc Rs CF (tenfold)

Obs −0.89 (−0.03 to 0.01) 0.21 (0.00–0.00) −0.72 (−0.01–0.00) 0.04 (0.0–0.00)
CERES −0.64 (−0.03 to 0.01) 0.02 (0.00–0.00) −0.88 (−0.02 to 0.00)
ERAI 3.95 (0.01–0.05) −0.14 (0.00–0.00) −3.09 (−0.04 to −0.02) 1.46 (0.01–0.02) −0.07 (0.0–0.00)
JRA55 −0.13 (−0.01 to 0.01) 0.01 (0.00–0.00) 0.26 (0.00–0.00) 0.42 (0.00–0.01) −0.03 (0.0–0.00)
CFSR 4.80 (0.02–0.06) 0.01 (0.00–0.00) −0.38 (−0.01 to 0.00) 3.33 (0.02–0.03) −0.11 (0.0–0.00)
MERRA2 −2.25 (−0.03 to −0.01) 0.06 (0.00–0.00) −1.71 (−0.02 to −0.01) −0.87 (−0.01 to 0.00) −0.09 (0.0–0.00)
MERRA 4.17 (0.02–0.04) −0.26 (0.00–0.00) 0.58 (0.00–0.01) 1.18 (0.01–0.01) −0.11 (0.0–0.00)

Note. Mann‐ Kendall analysis are used to establish the significance of trends. Numbers in the parentheses represent uncertainties by Sen's nonparametric
estimator. Cloud fraction trends and their uncertainties are increased tenfold times because the original values are too small for CF. Bold numbers represent
significance of trends. CERES = Clouds and the Earth's Radiant Energy System; MERRA = Modern‐Era Retrospective Analysis for Research
and Applications; JRA55 = Japanese 55‐year reanalysis; ERAI = European Centre for Medium Range Weather Forecasting Reanalysis‐Interim;
CFSR = Climate Forecast System Reanalysis.
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Figure 6. The spatial distributions of the correlation coefficient (R). (a–g) The R between the annual anomaly surface
incident solar radiation (Rs) and the annual anomaly cloud fraction (CF). (h–n) The R between the annual anomaly Rs
and the annual anomaly the Rc. Obs denotes the observation data, and CERES denotes the CERES EBAF surface data. The
probability density plot embedded in each subplot is the same with Figure 2 but stands for the distribution of correlation
coefficient. CERES EBAF = Clouds and the Earth's Radiant Energy System energy balanced and filled product.
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CF trends and Rc trends compared with the CERES EBAF data (Table 3 and Figure 5). ERAI and MERRA
produce large, positive Rs trend biases ranging from 10 to 20 W/m2 per decade and correspondingly large
negative CF trend biases (0 to −0.3 per decade) in east China. For Rc simulation results, CERES EBAF pro-
duced a decreasing trend in Rc in the North China Plain (32–40°N, 114–121°E) and east China. This might be
attributed to the increasing trend in aerosol loading in these areas that is consistent with previous studies
(Tang et al., 2017; Yang et al., 2009). ERAI, JRA55, CFSR, and MERRA show overestimated Rc trends in
the North China Plain because these reanalyses do not include the increase in aerosols that corresponds a
decreasing trend in Rc. ERAI exhibits negative biases in the Rc trend in northern China, and therefore, the
uncertainties in the water vapor trend from ERAI might not be ruled out (Ning et al., 2013).

3.3. The Impacts of CF and Rc on Biases in the Mean and Trend of Rs

Figure 6 illustrates the correlation between the annual anomalies of CF, Rc, and annual anomalies of Rs.
Based on observations, reanalyses fail to produce the weak negative correlation between the annual

Figure 7. Maps of the correlation coefficient (R) between the bias in the annual anomaly cloud fraction (CF) and the bias in the annual anomaly surface solar
radiation (Rs). In the left column (a, d, g, j, and m), the observed CF and the observed Rs represent the CF reference data derived from the observations, and the Rs
reference data are the SunDu‐derived Rs data. In the middle column (b, e, h, k, and n), CERES CF and CERES Rs represent the CF reference data and Rs
reference data are calculated by the CERES EBAF data. In the right column (c, f, i, l, and o), CERES CF and observed Rs represent the CF reference data and
the CERES EBAF data, and the Rs reference data are the SunDu‐derived Rs data. The time span is from 2000 to 2014. The probability density plot embedded in
each subplot is the same with Figure 2 but stands for the distribution of correlation coefficient. CERES EBAF = Clouds and the Earth's Radiant Energy System
energy balanced and filled product.
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anomalies of CF and Rs in northern China because most reanalyses ignore the interannual variability in
dust, which leaves the interannual variability in Rs from reanalyses highly dependent on the CF (Fujiwara
et al., 2017; Randles et al., 2017; Zhang et al., 2019). The distribution diagrams of Figure 6 further show that
reanalyses have more negative correlation between the CF and Rs than that of observations.

Positive correlations between annual anomalies in Rc and annual anomalies in Rs are found in northern
China based on the observations and CERES EBAF data (Figure 6). However, only MERRA2 shows consis-
tent correlation spatial patterns, which is likely because of its improvement in aerosol simulation.

Figure 7 shows the correlation between the bias in annual anomaly CF and the bias in the annual anomaly
Rs. Using field observations as reference, reanalyses produce negative correlation between the bias in the
annual anomaly CF and that in the annual anomaly Rs, with the national mean determination coefficient
(R2) ranging from 0.36 to 0.43 (Table 4). Figure 7 also show that reanalyses have stronger negative correla-
tion when both CF and Rs reference data use CERES EBAF data. Because Rs and CF are independently
observed for the field observations, the CERES EBAF Rs is calculated from its CF. In spatial terms, the nega-
tive correlation coefficient between the annual anomaly CF bias and annual anomaly Rs bias is high in
southern China (−0.50 to −1.00) and low in northern China (−0.40 to 0.00), compared with field observa-
tion. Similar spatial patterns can also be found by using the CERES EBAF data as a reference, excluding
MERRA2, which shows a high negative correlation in northeast China.

The sensitivity of the annual anomaly bias in Rs to that in the CF from reanalyses (Figure 8) correspondingly
exhibits an almost similar spatial pattern compared with the correlation results from Figure 7. MERRA2 has
less sensitivity of the annual bias in Rs to that in the CF thanMERRA, ERAI, JRA55, and CFSR because these
reanalyes except MERRA2 do not include the impact of interannual variability in aerosols on Rs.

Figure 9 shows the correlation between the bias in annual anomaly Rc and that in the annual anomaly Rs. All
reanalyses show an almost positive correlation between the bias in annual anomaly Rc and that in the annual
anomaly Rs with national means of R2 ranging from 0.08 to 0.32 (Table 5). In spatial terms, a high positive
correlation coefficient between the bias in the annual anomaly Rc and the bias in the annual anomaly Rs
over China can be seen in northern China based on JRA55, CFSR, MERRA2, and MERRA, which is prob-
ably because the low CF in northern China has a small impact on the variation in Rs, while aerosols and
water vapor have large contributions to the modification of the variation in the annual anomaly Rs in
northern China. Comparatively, the ERAI shows a low correlation coefficient between the bias in the annual

Table 4
Statistical Summary of the Determination Coefficient (R2) and Sensitivity Between the Bias in the Annual Anomaly Surface Solar Radiation (Rs) and the Bias in the
Annual Anomaly Cloud Fraction (CF) Given the National Mean Over China

Sensitivity R2

Ref Rs Ref CF Mean Median Mean Median

ERAI Obs Obs −102.97 ± 1.78 −102.33 ± 0.40 0.36 0.31
JRA55 Obs Obs −83.60 ± 12.80 −85.13 ± 0.50 0.31 0.26
CFSR Obs Obs −115.27 ± 9.95 −104.93 ± 0.29 0.37 0.35
MERRA2 Obs Obs −70.46 ± 4.09 −72.72 ± 0.47 0.28 0.23
MERRA Obs Obs −99.03 ± 1.28 −103.92 ± 0.38 0.43 0.42
ERAI CERES CERES −141.89 ± 0.36 −162.46 ± 0.33 0.45 0.50
JRA55 CERES CERES −136.48 ± 0.45 −140.97 ± 0.41 0.42 0.44
CFSR CERES CERES −133.93 ± 0.25 −142.74 ± 0.23 0.43 0.44
MERRA2 CERES CERES −120.60 ± 0.48 −122.72 ± 0.41 0.41 0.43
MERRA CERES CERES −141.87 ± 0.32 −147.61 ± 0.28 0.55 0.60
ERAI Obs CERES −120.25 ± 0.67 −125.72 ± 0.30 0.34 0.30
JRA55 Obs CERES −97.14 ± 0.81 −105.79 ± 0.36 0.29 0.26
CFSR Obs CERES −121.06 ± 0.74 −123.60 ± 0.20 0.35 0.30
MERRA2 Obs CERES −90.71 ± 0.52 −90.82 ± 0.32 0.24 0.19
MERRA Obs CERES −116.95 ± 0.55 −123.39 ± 0.25 0.41 0.40

Note. CERES is CERES EBAF data and Obs is observed data. Time span is from 2000 to 2014. CERES EBAF = Clouds and the Earth's Radiant Energy System
energy balanced and filled product; MERRA = Modern‐Era Retrospective Analysis for Research and Applications; JRA55 = Japanese 55‐year reanalysis;
ERAI = European Centre for Medium Range Weather Forecasting Reanalysis‐Interim; CFSR = Climate Forecast System Reanalysis.
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anomaly Rc and the bias in the annual anomaly Rs, which might be due to the calculation method for Rc in
the ERAI. We calculate the Rc using the ERAI clear‐sky net Rs and its forecast albedo product. However,
the calculated Rc may be a little different from the Rc data used in the original ERAI radiation transfer cal-
culation (Hogan, 2014).

For the impacts of Rs mean bias, the correlation results (Table 4) show that the biases in the CF in MERRA
can largely explain the biases in Rs by 55%, followed by ERAI (45%), CFSR (43%), JRA55 (42%), andMERRA2
(41%) using satellite data as a reference. The biases in Rc can explain the biases in Rs by 32% in JRA55, 29% in
MERRA, 22% in CFSR, 14% in MERRA2, and 9% in ERAI using satellite data as a reference (Table 5). The
correlation results suggest that the bias in the CF has more impacts on the bias in Rs than that in Rc.

Figure 10 shows the sensitivity of trend error in Rs to that in CF, and Figure 11 illustrate the sensitivity of
trend error in Rs to that in Rc. In spatial terms, the trend error in the CF in all five reanalyses (except

Figure 8. Maps of sensitivity between the bias in the annual anomaly cloud fraction (CF) and the bias in the annual
anomaly of surface solar radiation (Rs) for the five reanalyses using various sources as the reference. In the left column
(a, d, g, j, and m), the observed CF and the SunDu Rs represent the reference data. In the middle column (b, e, h, k, and n),
the CERES CF and CERES Rs represent the reference data. In the right column (c, f, i, l, and o), the CERES CF and
the SunDu Rs represent the reference data. The time span is from 2000 to 2014. The probability density plot embedded in
each subplot is the same with Figure 2 but stands for the distribution of sensitivity between the bias in the annual
anomaly CF and the bias in the annual anomaly of Rs. CERES EBAF = Clouds and the Earth's Radiant Energy System
energy balanced and filled product.
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Figure 9. The correlation coefficient (R) between the bias in the annual anomaly surface solar radiation (Rs) and the bias
in the annual anomaly surface solar radiation under clear‐sky condition (Rc), and sensitivity of the bias in the annual
anomaly Rs to the bias in the annual anomaly Rc. The left column (a–e) shows the R, and the right column (f–j) shows the
sensitivity. The reference data are the CERES EBAF‐derived Rs. The time span is from 2000 to 2014. The probability
density plot embedded in each subplot is the same with Figure 2 but stands for the distribution of the correlation coeffi-
cient. CERES EBAF = Clouds and the Earth's Radiant Energy System energy balanced and filled product.
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MERRA2) can largely explain the trend error in Rs, especially in east China (Figure 10). However, the trend
error in Rc in all five reanalyses, except MERRA2 and JRA55, can only slightly explain the trend error in Rs

(Figure 11). The distribution diagrams of Figures 10 and 11 further show that the trend error in Rs is more
sensitive to that of CF than the trend error in Rc.

In summary, the trend error in the CF from 2000 to 2014 inMERRA can explain the trend error in Rs by 73%,
followed by ERAI (64%), CFSR (44%), MERRA2 (35%), and JRA55 (12%) using the CERES EBAF data as a
reference (Table 6). The trend error in Rc from 2000 to 2014 can explain the trend error in Rs by 36% in
ERAI, 32% in JRA55, 34% in CFSR, 43% in MERRA2, and 30% MERRA using the CERES EBAF data as
a reference.

4. Discussion
4.1. Performances of the Reanalyses

Using the best records of historic surface radiation data and trends by Sun duration observed data, this study
presents a comprehensive analysis of the performance of five reanalyses commonly used in atmospheric
research with regard to geographically distributed surface solar radiation trends over China. Our results
show that all five reanalyses are wrong in the same direction with regard to Rs, regardless of the different
methods and parameterizations used for CF and aerosols, which are consistent with previous findings (Jia
et al., 2013; Wang et al., 2015; Wu et al., 2015; Xia et al., 2006). This is largely because the current climate
models have difficulty simulating low‐level clouds, such as stratus clouds in southern China (Yu et al.,
2001; Yu et al., 2004). High AOD in winter and aerosol‐cloud interaction make it worse (Li et al., 2016; Li
et al., 2017). Results also demonstrate the dangers of using only radiative transfer and climatological aerosol
information without data assimilation in the reanalysis packages

Our sensitivity analyses illustrate that the biases in CF in the reanalyses can explain the biases in Rs by 55–
41%, and the biases in Rc can explain the biases in Rs by 32–9%. These two factors together can explain the
biases in Rs by 87–50%. The biases in Rs are more sensitive to the CF than those in the Rc in the reanalyses.

The improvement in aerosol simulation of MERRA2 recently draws much attention (Randles et al., 2017).
Our previous study (Feng and Wang; Wang, 2014) also shows MERRA2 has a better performance in the
simulation of the Rs trend and Rc than MERRA, and the correlation between CF and Rs in northern
China from MERRA2 is smaller than MERRA. However, the Rs trend error in MERRA2 is still very large
because the simulation error of clouds still exists.

CERES EBAF Rs retrievals have been used to compare with the reanalyses. Our previous study also suggests
that CERES EBAF Rs retrievals have 9.9 W/m2 mean absolute biases comparing with BSRN sites data (Feng

Table 5
Statistical Summary of the Determination Coefficient (R2) and Sensitivity Between the Bias in the Annual Anomaly Surface Solar Radiation (Rs) and the Bias in the
Annual Anomaly Rs Under Clear Sky Condition (Rc) Given the National Mean Over China

Sensitivity R2

Ref Rs Ref Rc Mean Median Mean Median

ERAI Obs CERES −0.04 ± 2.63e−3 −0.04 ± 1.08e−3 0.08 0.04
JRA55 Obs CERES 0.62 ± 4.65e−3 0.62 ± 2.91e−3 0.17 0.12
CFSR Obs CERES 0.25 ± 3.86e−3 0.46 ± 1.79e−3 0.14 0.09
MERRA2 Obs CERES 0.38 ± 5.47e−3 0.29 ± 3.72e−3 0.09 0.05
MERRA Obs CERES 0.79 ± 7.65e−3 0.76 ± 2.25e−3 0.17 0.13
ERAI CERES CERES 0.00 ± 1.19e−3 0.03 ± 1.11e−3 0.09 0.05
JRA55 CERES CERES 0.92 ± 3.70e−3 0.95 ± 3.26e−3 0.32 0.33
CFSR CERES CERES 0.60 ± 2.20e−3 0.83 ± 2.01e−3 0.22 0.19
MERRA2 CERES CERES 0.65 ± 4.45e−3 0.55 ± 4.04e−3 0.14 0.09
MERRA CERES CERES 1.07 ± 3.00e−3 1.06 ± 2.52e−3 0.29 0.28

Note. CERES represents the CERES EBAF data, and Obs represents the observed data. The time span is from 2000 to 2014. CERES EBAF = Clouds and the
Earth's Radiant Energy System energy balanced and filled product; MERRA = Modern‐Era Retrospective Analysis for Research and Applications; JRA55 =
Japanese 55‐year reanalysis; ERAI = European Centre forMediumRangeWeather Forecasting Reanalysis‐Interim; CFSR=Climate Forecast SystemReanalysis.
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& Wang, 2018b). Existing study suggest that changing the MODIS AOD from Collections 4 to 5 resulted in
the discontinuity in the CERES EBAF global land Rs in 2006 (Jia et al., 2018). Moreover, satellite AOD
retrievals are only available under cloud‐free conditions, which cannot fully represent AOD trend in the
all‐weather situation. Although upgrades have been made in CERES EBAF data recently, the
uncertainties of MODIS AOD trend used in CERES EBAF data might not be ignored. Likewise, the
limited number of observations in the west part of China might have potential impacts on the application
of the area‐weighted method in data‐void regions and its uncertainties cannot be ruled out. Moreover,
SunDu data are derived from human read of a burned signal. Alternation of human observer should produce
inhomogeneous time series of SunDu data. Although the SunDu‐derived Rs used in this study is processed
carefully with quality control (He et al., 2018; Wang et al., 2015), the uncertainties of SunDu data also cannot
be ignored.

4.2. Impact Factors of Variability in Rs

Previous studies (Boers et al., 2017; Pfeifroth et al., 2018; Wang, Dickinson, et al., 2012) have confirmed that
clouds and aerosols are the dominant factors in the variation in Rs. Comparatively, radiatively active gases

Figure 10. The sensitivity of trend error in annual anomaly surface solar radiation (Rs) to that in the annual anomaly
cloud fraction (CF). The left column is calculated based on field observations, the middle column is calculated based on
CERES EBAF data, and the right column shows the cross terms. The time span is from 2000 to 2014. The probability
density plot embedded in each subplot is the same with Figure 2 but stands for the distribution of the sensitivity of trend
error in annual anomaly Rs to that in the annual anomaly CF. CERES EBAF = Clouds and the Earth's Radiant Energy
System energy balanced and filled product.
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andwater vapor haveminor effects on the variation in Rs (Kvalevåg &Myhre, 2007; Mateos et al., 2013;Wild,
2016) and indicated that aerosols are the main factor affecting the variation in Rc. Large aerosol emissions
due to rapid development in China are expected to be the main factor for the variation in Rs over China
(Liang & Xia, 2005; Qian et al., 2015;Wang, Yang, et al., 2012). Li et al. (2018) further stated that the variation
in single‐scattering albedo can also affect the trend in Rs, especially for diffuse radiation. However, the study
conducted by Tang et al. (2017) suggests that clouds are likely to be the main contributor to the variation

Figure 11. The sensitivity of trend error in annual anomaly surface solar radiation (Rs) to that in the annual anomaly
surface solar radiation under clear‐sky condition (Rc). In the left column (a–e), the Rs trend bias is calculated based on
field observations, and the right column (f–j) is calculated based on CERES EBAF data. The time span is from 2000 to 2014.
CERES EBAF = Clouds and the Earth's Radiant Energy System energy balanced and filled product.
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in Rs. The controlling factors of variability in Rs is difficult to qualify, sys-
tematic studies including all impact factors may conduct only at site scale
or using climate models. All these factors jointly lead to the different con-
clusions from earlier studies. Therefore, improving the Rs simulation
model such as reanalyses is helpful for further studies on this issue.

Atmospheric aerosol loading is fixed in most reanalyses except MERRA2;
the major driver of Rc produced by most reanalyses are water vapor.
Compared with CERES EBAF, the main error sources of Rc data from rea-
nalyses are mainly aerosol, although water vapor cannot be rule out
(Dolinar et al., 2016). This is also true for MERRA2.

Cloud overlap schemes have close relationships with the vertical resolu-
tions in the reanalyses (Oreopoulos & Khairoutdinov, 2003; Stephens
et al., 2004), which can also introduce uncertainties in the simulation of
CF.Wang et al. (2016) found that there were nonnegligible biases in simu-
lating clouds and their shortwave radiation effects by using a maximum
and random overlap scheme. Recently, the newly developed Monte
Carlo independent column approximation scheme is expected to have
an overwhelming advantage in simulating clouds compared with other
cloud overlap schemes.

This study discusses the impacts of CF on Rs in the reanalyses and the con-
tribution of aerosols to Rs variability. Other cloud and aerosol properties
might also be important factors, for example, changes in cloud radiative
properties, such as cloud optical thickness (Deneke et al., 2008; McCoy
et al., 2014). Cloud height, which is relative to the distributions of low
clouds, also impacts the variation in Rs (An et al., 2017; Matuszko,
2012). Li et al. (2018) show that the variation in single‐scattering albedo
has a substantial impact on the trend in Rs.

Moreover, elevation also impacts Rs. For example, comparison results of
observed Rs, GEWEX‐SRB, and ISCCP‐FD in Tibet from Yang et al.
(2006) show the differences in elevations and these products might
result in nonnegligible uncertainties. Du et al. (2018) also find that the
elevation bias in reanalyses has important impacts on temperature
biases of reanalyses.

5. Conclusions

Our results show that all reanalyses overestimate themultiyear mean Rs over China (24.10–40.00W/m2) and
correspondingly underestimate the multiyear mean CF (−0.18 to −0.03) for the highest and lowest of reana-
lyses, especially in southern China. ERAI and CFSR have a larger bias in simulating Rc compared with those
of JRA55, MERRA2, andMERRA. ERAI and CFSR show high positive biases in Rc in south China and nega-
tive biases in northwest China. All reanalyses have larger Rs relative biases in winter and spring than
other seasons.

We partite the error source between clouds and aerosols and find the biases in the CF can explain the biases
in Rs by 41–55%, and the bias in Rc, which is primarily due to errors in atmospheric aerosol loading, can
explain 9–32% of the bias in Rs in the reanalyses. The trend error in the CF in the reanalyses can largely
explain approximately 12–73% of the trend error in Rs, while the trend error in Rc can explain 30–43% of
the trend error in Rs using CERES EBAF as a reference. In east China, the trend error in Rs can be largely
explained by those in the CF in the five reanalyses (excluding MERRA2). The trend error in Rc in all five rea-
nalyses have a weak relationship with those in Rs (excludingMERRA2 and JRA55). The biases in Rs aremore
sensitive to the biases in the CF than those in the Rc. Reanalysis data are commonly used as truth and cred-
ible support for atmospheric research; our study suggests that improvement of the cloud and aerosol repre-
sentation in reanalyses is needed, especially for aerosol‐cloud interactions parameterization.

Table 6
Statistical Summary of Trend Bias Sensitivity Coefficient (i.e., the Rs Trend) Is
Explained by the Cloud Fraction (CF) and the Surface Solar Radiation
Under Clear‐Sky Condition (Rc)

Explain Rs_ref Cloud_ref Mean Median

ERAI Cloud Obs Obs 0.55 0.63
JRA55 Cloud Obs Obs 0.46 0.45
CFSR Cloud Obs Obs 0.49 0.50
MERRA2 Cloud Obs Obs 0.20 0.19
MERRA Cloud Obs Obs 0.81 0.78
ERAI Cloud CERES CERES 0.64 0.69
JRA55 Cloud CERES CERES 0.12 0.60
CFSR Cloud CERES CERES 0.44 0.52
MERRA2 Cloud CERES CERES 0.35 0.40
MERRA Cloud CERES CERES 0.73 0.88
ERAI Cloud Obs CERES 0.54 0.56
JRA55 Cloud Obs CERES 0.51 0.46
CFSR Cloud Obs CERES 0.55 0.55
MERRA2 Cloud Obs CERES 0.47 0.38
MERRA Cloud Obs CERES 0.63 0.73
ERAI Rc Obs CERES 0.27 0.17
JRA55 Rc Obs CERES 0.23 0.15
CFSR Rc Obs CERES 0.22 0.15
MERRA2 Rc Obs CERES 0.32 0.18
MERRA Rc Obs CERES 0.21 0.18
ERAI Rc CERES CERES 0.36 0.23
JRA55 Rc CERES CERES 0.32 0.21
CFSR Rc CERES CERES 0.34 0.23
MERRA2 Rc CERES CERES 0.43 0.33
MERRA Rc CERES CERES 0.30 0.21

Note. CERES represents the CERES EBAF data, and Obs represents
the observed data. The time span is from 2000 to 2014.
CERES EBAF = Clouds and the Earth's Radiant Energy System energy
balanced and filled product; MERRA = Modern‐Era Retrospective
Analysis for Research and Applications; JRA55 = Japanese
55‐year reanalysis; ERAI = European Centre for Medium RangeWeather
Forecasting Reanalysis‐Interim; CFSR = Climate Forecast
System Reanalysis.
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