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Abstract
The effective detection of global urban expansion is thebasis of understandingurban sustainability.We
propose a fully convolutional network (FCN) and employ it to detect global urban expansion from
1992–2016.We found that the global urban land area increased from274.7 thousandkm2

–621.1
thousand km2,which is an increase of 346.4 thousandkm2 and a growth by 1.3 times. The results display
a relatively high accuracywith an average kappa index of 0.5,which is 0.3 higher than those of existing
global urban expansiondatasets. Threemajor advantages of the proposedFCNcontribute to the
improved accuracy, including the integrationofmulti-source remotely senseddata, the combinationof
features atmultiple scales, and the ability to address the lack of training samples for historical urban land.
Thus, the proposed FCNhas great potential to effectively detect global urban expansion.

1. Introduction

Urban expansion represents the transformation of
non-urban land to urban land, which results in
increases of the areas of cities (Seto et al 2011). In the
context of rapid urban population growth and socio-
economic development, the world has undergone
large-scale urban expansion (Wu 2014, Angel et al
2016). Between 2000–2010, the global urban land area
increased from 0.6 million km2 to 0.7–0.9 million
km2, and these values reflect growth rates of 18.1%–

44.2% (Angel et al 2011). By 2050, the global urban
land area is projected to expand to 1.2–3.1 million
km2, which is 1.6–3.6 times the global urban land area
in 2010 (Angel et al 2011). Global urban expansion has
caused many ecological and environmental issues,
such as losses of biodiversity, increases in carbon
emissions, water scarcity, regional warming, and

environmental pollution (Grimm et al 2008, McDo-
nald et al 2008, 2013, Seto et al 2012, Liu et al 2016b,
Bren d’Amour et al 2017, van Vliet et al 2017). To
evaluate such effects of urban expansion, reliable
information on global urban expansion is indispensa-
ble (Seto et al 2011, Liu et al 2014). Thus, how to
effectively detect global urban expansion has become a
crucial issue in understanding urban sustainability
(Zhang and Seto 2011,Wu2014, Angel et al 2016).

At present, data on global urban expansion come
from eight widely referenced sources (table 1). These
data represent global urban expansion during six peri-
ods, 10000 BC–2016, 1975–2014/2015, 1990–2010,
1992–2015, 2000–2010 and 2010–2017 (table 1). Of
these sources, the HYDE describes global urban
expansion from 10000 BC–2016 (Klein Goldwijk et al
2010). The GHS data reveal global urban expansion
from 1975–2014/2015 (Pesaresi et al 2013, 2016). The
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MGIS data represent global urban expansion from
1990–2010 (Liu et al 2018). The global land cover data
derived from the ESACCI describe global urban
expansion from 1992–2015 (UCL-Geomatics 2017).
The GLC30 dataset and the IMPSA dataset represent
global urban expansion between 2000–2010 (Elvidge
et al 2007, Chen et al 2015). The FROM-GLC data
reveal global urban expansion from 2010–2017 (Gong
et al 2013). These data have beenwidely used to under-
stand the ecological and environmental effects of
urban expansion across theworld (KleinGoldwijk et al
2010, Pesaresi et al 2013, 2016, UCL-Geomatics 2017).
However, the HYDE data have a low resolution of 10
km and thus do not provide adequate spatial informa-
tion. The GHS data, the FROM-GLC data and the
ESACCI data are limited by their low accuracy; the
kappa value of the GHS data is approximately 0.3
(Pesaresi et al 2016), the overall accuracy (OA) of the
FROM-GLC data is approximately 60% (Gong et al
2013), and the producer’s accuracy of the ESACCI data
is approximately 51% (UCL-Geomatics 2017). The
MGIS, GLC30 and IMPSA datasets lack information
on global urban expansion after 2010. Thus, develop-
ing effective methods of detecting global urban expan-
sion is stillworthwhile (Esch et al 2017).

Fully convolutional network (FCN)-basedmethods
provide a novel approach to the detection of global
urban expansion. The FCN is a deep learning structure
that employs the ‘pixel-to-pixel’ image recognition
mode developed by Long et al (2015) on the basis of the
convolutional neural network (CNN). FCN-based
models inherit the basic structure of CNN; their
primary components include convolutional layers,
pooling layers, activation layers, and concatenation lay-
ers (Long et al 2015). Of these layers, convolutional
layers can identify the local features of images; pooling
layers compress numerous features to extract the main
features; activation layers effectively express nonlinear
features; and concatenation layers integrate features
over multiple scales (LeCun et al 1990, 1998, 2015,
Szegedy et al 2014). Through transmitting information
between multiple convolutional layers, pooling layers,
activation layers and concatenation layers, FCNs effec-
tively integrate remote sensing data frommultiple sour-
ces and features over multiple scales to identify objects
accurately (Chen et al 2017, Yang et al 2017). Further-
more, FCNs have the ability to transfer leaning, which
enables the extraction of dynamic information using
parameters obtained from training samples in a single
period. Recently, researchers have started to use FCN-
based methods to detect urban land at different scales.
For example, Maggiori et al (2016) employed FCN-
basedmethods to quantify the patterns of urban land in
Boston, United States, whereas Fu et al (2017) applied
FCN-basedmethods to extract urban land in the north-
eastern parts of Beijing, China. However, FCNs have
not been used todetect global urban expansion.

Our objective is to propose a new FCN to detect
global urban expansion from 1992 to 2016 at 1 km. To

achieve this goal, we first develop an FCN to integrate
remotely sensed data from multiple sources effec-
tively.We then use the proposedmethod to extract the
global urban land in 1992, 1996, 2000, 2006, 2010, and
2016 using nighttime light (NTL) data, normalized
difference vegetation index (NDVI) data, and land
surface temperature (LST) data. Our method provides
an effectivemeans of detecting global urban expansion
over large scales.

2. Study area and data

2.1. Study area
Our study area is located from 65°S–75°N latitude
worldwide, identical to the areal coverage of the NTL
data (figure 1). This zone contains 0.13 billion km2 of
land surface area and accounts for 89.26%of the global
land surface area. It includes all of Asia, Africa, Latin
America and the Caribbean, and Oceania, andmost of
Europe andNorthernAmerica (figure 1).

2.2.Data
This study makes use of several data sources with global
coverage, specifically the NTL, NDVI, and LST data
mentioned above, to detect urban expansion. The
500mModerateResolution ImagingSpectroradiometer
(MODIS) Urban Land Cover (MOD500) data are used
to select the training samples. Urban population statis-
tics, Landsat images, and existing GHS data and the
ESACCI global land cover datawere also obtained.

The NTL data were obtained from the NOAA/
NGDC (http://ngdc.noaa.gov/eog, accessed 20 Sep-
tember 2017). These data were collected by the Defense
Meteorological Satellite Program’s Operational Line-
scan System (DMSP-OLS) and include uncalibrated
NTL data acquired in 1992 and radiance-calibrated
NTL data from 1996, 2000, 2006, and 2010 at a resolu-
tion of 1 km. The monthly NTL data from 2016 at a
resolution of 742 m acquired by the Suomi National
Polar-orbiting Partnership’s Visible Infrared Imaging
Radiometer Suite (NPP-VIIRS)were also obtained. The
approach introduced by Elvidge et al (2009) is applied
to intercalibrate the uncalibrated NTL data collected in
1992 to improve their continuity and comparability,
and the approach developed by Elvidge et al (2013) is
performed to produce the annual mean value compo-
site of the 2016 VIIRS NTL data. To reduce the influ-
ence of gas flares, we follow Zhou et al (2014, 2015) to
exclude gas flare pixels from the NTL data using the gas
flaremask obtained fromNOAA/NGDC.

The NDVI data include theMODIS NDVI data for
2000, 2006, 2010, and 2016 and the NOAA-AVHRR
NDVI data for 1992 and 1996 at a resolution of 1 km.
The MODIS NDVI data were obtained from the
MODIS 16 d composite products (http://ladsweb.
nascom.nasa.gov, accessed 20 September 2017). The
NOAA-AVHRR NDVI data were obtained from the
USGS website (https://lta.cr.usgs.gov/NDVI, accessed
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20 September 2017). Using the maximum value com-
posite (MVC) approach introduced by Holben (1986),
an annual MVC of the NDVI data for each year is pro-
duced to reduce cloud contamination.

The LST data in 2000, 2006, 2010, and 2016 at a
resolution of 1 km are derived from theMODIS eight-
day composite product (MOD11A2) (http://ladsweb.
nascom.nasa.gov, accessed 20 September 2017). The
nighttime LST data in this product are used because
the LST in nighttime generally has better performance
for distinguishing between urban and non-urban land
(Buyantuyev and Wu 2010, Zakšek and Oštir 2012).
Consistent with Mildrexler et al (2009), an annual
MVCof the LST data for each year is also produced.

The MOD500 data used to select training samples
were obtained from the Center for Sustainability and
the Global Environment at the University of Wiscon-
sin-Madison (http://www.sage.wisc.edu/, accessed
20 September 2017). The MOD500 data are produced
through supervised classification of MODIS multi-
spectral data circa 2001 (Schneider et al 2009, 2010).
The data have anOAof 93%,which is a relatively accu-
rate representation of the global urban land area
(Schneider et al 2009, 2010). All of the NTL, NDVI,
LST, and MOD500 data are resampled to a spatial
resolution of 1 km. In addition, all of the data layers
are geometrically corrected with reference to the
MOD500 data.

In addition, the statistical data on the global urban
population used for the accuracy assessment were
obtained from the World Urbanization Prospects

published by the United Nations Department of Eco-
nomic and Social Affairs (2015) (https://esa.un.org/
unpd/wup/, accessed 20 September 2017). The Land-
sat images were obtained from the USGS (http://
glovis.usgs.gov.com, accessed 20 September 2017).
The built-up grid and settlement grid of the GHS
Layer were obtained from the European Commission
Joint Research Center (http://ghslsys.jrc.ec.europa.
eu/, accessed 20 September 2017). Finally, the
ESACCI data were obtained from the European
Space Agency (http://maps.elie.ucl.ac.be/CCI/viewer/
index.php, accessed 20 September 2017).

3.Methods

3.1.Developing the FCN
Following the basic FCN framework presented by
Long et al (2015), we develop a new FCN for detecting
global urban expansion (figure 2). The FCN mainly
includes one input layer, one pooling layer, three
convolutional layers, one concatenation layer, and one
output layer, and each convolutional layer follows an
activation layer (figure 2(b)). The input layer is used to
integrate the NTL, NDVI, and LST data to provide
both socioeconomic and physical information. Long-
itudes and latitudes are also entered to provide
information on the location of urban land. The
convolutional and pooling layers are used to obtain
feature information from the data at the pixel,
neighborhood and urban region scales. The

Figure 1.The study area. *The study area covers the latitudes of 65°S–75°Nand the longitudes of 180°W–180°E. It includes all of
Africa, Asia, Latin America and theCaribbean, andOceania andmost of Europe andNorthernAmerica. These regionswere defined
according to theUnitedNations’ ‘Definition of Regions’ (https://esa.un.org/unpd/wpp/General/DefinitionRegions.aspx). **The 34
cities selected for use in the accuracy assessment include 10 cities with populations above 10million (i.e.➀LosAngeles;➁NewYork;
➂Rio de Janeiro;➃Sao Paulo;➄London;➅Paris;➆Cairo;➇Lagos;➈Mumbai; and➉Beijing), 12 cities with populations between 1
million and 10million (i.e. Portland,Oregon; Philadelphia; Guadalajara; Guatemala City; Kigali; Kampala; Milan;
Warsaw; Medan; / HoChiMinhCity; Sydney; and Auckland), and 12 cities with populations below 1million (i.e.

Victoria; Springfield,Massachusetts; Valledupar; Palmas; Ndola; Beira; Thessaloniki; Tyumen; Malatya;
Ipoh; GoldCoast; and Suva).
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concatenation layer is used to integrate the feature
information at the three scales to identify urban land
(figure 2(b)).

When extracting global urban land in 2000 and
after, the input layers include five bands, specifically
NTL, NDVI, LST, longitude, and latitude. However,
when extracting urban land for 1992 and 1996, the
input layer includes only four bands, specifically NTL,
NDVI, longitude, and latitude. That is, the MODIS
LST data are unavailable.

The three convolutional layers and the pooling
layer employ different numbers and sizes of convolu-
tional kernels to obtain information on urban land at
three scales of pixel, neighborhood and urban region.
Both the numbers and sizes of the convolutional ker-
nels are determined following previous studies and
trial-and-error procedures (LeCun et al 1990, Szegedy
et al 2014, Long et al 2015).

The first convolutional layer contains 80 convolu-
tional kernels with a size of 1×1 pixel and is used to
obtain information at the pixel scale. Its relationship

with the input layer can be represented by the
equation (1):

å= +( · ) ( )Conv W Input Bias , 1i j
I

N

I i I j i,
1

,
1

,
1

0

where Convi j,
1 and InputI j, denote the DN values in the

first convolution layer and the input layer respectively;
i and I indicate the band; j indicates the pixel; WI i,

1 is
the weight of this convolution layer; Biasi

1 is the bias;
and N0 is the number of bands.

The second convolutional layer contains 40 con-
volutional kernels with a size of 3×3 pixels and is
used to obtain information at the neighborhood scale.
Its relationship with the input layer can be represented
by the equation (2):

åå= +( · ) ( )
·

Conv W Input Bias , 2i j
I

N

d

K K

I i d I j d i,
2

, ,
2

, ,
2

0 1 1

where Convi j,
2 and InputI j d, , denote the DN values in

the second convolution layer and the input layer
respectively; d indicates the pixel in the neighborhood

Figure 2.The FCN-basedmethod. (a) Flow chart of the proposedmethod; (b) structure of the proposed FCN.
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Table 1.Overview of the existing data on global urban expansion.

Time period

Spatial

resolution Name of dataset Abbreviation

Urban land

definition Method Data source Reference

10000BC-2016 10 km HistoryDatabase of theGlo-

bal Environment

HYDE Built-up area Urban population density-based statistical

model

DISCovermap, GLC2000, Landscan

population data, andDemo-

graphia data

(KleinGoldwijk et al
2010)

1975–2014/

2015

38 m/

25 m/

1 km

Built-up grid of theGlobal

Human Settlement Layer

GHSbuilt-up Built-up area Symbolicmachine learning Landsat images (Pesaresi et al 2013, 2016)

1 km GlobalHuman Settlement

layer’s settlement grid

GHS SMOD Urban centers /

urban clusters

REGIO-OECD ‘degree of urbanization’

model

GHS built-up and population data from

CIESINGPWv4

(Pesaresi et al 2013, 2016)

1990–2010 30m Multi-temporal Global

Impervious Surface

MGIS Impervious

surface

Normalized urban areas composite index Landsat images (Liu et al 2018)

1992–2015 300m Climate Change Initiative-

land cover

ESACCI Built-up area Unsupervised classification and change

detection

Global urban footprint, GHS built-up,

MERIS images, AVHRR images,

SPOT-VGT images and PROBA-V

images

(UCL-Geomatics, 2017)

2000–2010 30m Global LandCover at 30 m

resolution

GLC30 Impervious

surface

Pixel-object knowledge-based classification

and visual interpretation

Landsat images andHJ-1 images (Chen et al 2015)

1 km Global Impervious Surfaces IMPSA Impervious

surface

Linear regressionmodel DMSP-OLS nighttime light data and

Landscan population data

(Elvidge et al 2007)

2010–2017 30m Finer ResolutionObservation

andMonitoring ofGlobal

LandCover

FROM-GLC Impervious

surface

Conventionalmaximum likelihood classi-

fier, the J4.8 decision tree classifier, the

random forests ensemble classifier and the

support vectormachine

Landsat images (Gong et al 2013)
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of the jth pixel; WI i d, ,
2 is the weight of this convolution

layer; Biasi
2 is the bias; and K1 is the size of the

neighborhood.
The third convolutional layer (which contains 20

convolutional kernels with a size of 1×1 pixel) and a
pooling layer with a kernel size of 51×51 pixels are
combined to obtain information at the scale of urban
regions. The kernel size of 51×51 pixels used in the
pooling layer is determined based on the largest urban
region in the world (Angel et al 2016). The relationship
between the third convolutional layer and the pooling
layer can be represented by the equations (3), (4):

å= +( · ) ( )Conv W Pool Bias , 3i j
I

N

I i I j i,
3

,
3

,
3

0

where Convi j,
3 and PoolI j, denote the DN values in the

third convolution layer and the pooling layer respec-
tively; WI i,

3 is the weight of this convolution layer;
Biasi

3 is the bias

å= ( · ) ( )
·

/Pool Input K K , 4I j
g

K K

I j g, , , 2 2

2 2

where InputI j g, , denotes the DN value of the gth pixel
within the urban region of the jth pixel in the Ith band
in the input layer; and K2 denotes the size of the urban
region.

The concatenation layer is used to integrate the
information obtained by the three convolutional lay-
ers, and their relationships can be represented by the
equation (5):







= <

<
-

-

⎧
⎨
⎪⎪

⎩
⎪⎪

( )

( )

( )

( )Conc

f Conv i

f Conv i

f Conv i

, 80

, 80 120

, 120 140

, 5i j

i j

i j

i j

,

,
1

80,
2

120,
3

where Conci j, denotes the DN value in the concatena-
tion layer, and ( )f x denotes the activation function,
which can be represented by the equation (6):

=( ) ( ) ( )f x xmax 0, . 6

The relationship between the concatenation layer
and the output layer can be represented by the
equation (7):

=
>⎪

⎪

⎧
⎨
⎩ ( )

‐
Urban

Output Output

Otherwise

1,

0,
, 7j

j
urban

j
non urban

where Urbanj denotes the class value in the output
layer, in which 1 represents urban land whereas 0
represents non-urban land. Outputj

urban and
‐Outputj

non urban denote the probability that the jth pixel
represents urban land or non-urban land respectively.
These probabilities can be calculated using the follow-
ing equations:

å=

+ ⎟

⎛
⎝⎜

⎞
⎠

( · )

( )

Output f W Conc

Bias , 8

j
urban

i
i
urban

i j

urban

140

,

å=

+ ⎟

⎛
⎝⎜

⎞
⎠

( · )

( )

‐ ‐

‐

Output f W Conc

Bias , 9

j
non urban

i
i
non urban

i j

non urban

140

,

where Wi
urban and ‐Wi

non urban are weights, and
Biasurban and ‐Biasnon urbanare biases. The FCN is
developed using the Convolutional Architecture for
Fast Feature Embedding (Caffe) software platform (Jia
et al 2014).

3.2. Calibrating the FCN
The objective of calibration is to obtain the weights
used in the FCN. Essentially, calibration involves
iteratively estimating these weights using optimization
algorithms with the goal of minimizing the loss
function. This process includes three main steps:
selecting training samples, determining the loss func-
tion, and setting the optimization algorithm and
iteration parameters. First, we select training samples
that represent urban and non-urban land from the
MOD500 data and NTL data that cover the same
period. The selection of training samples can be
calculated using the equation (10):

=
=

= =
-

⎧
⎨⎪
⎩⎪

( )Train
Mod

Mod and PUL
Otherwise

1, 1
0, 0 1

1,

, 10i

i

i i

where Traini and Modi denote the class of the ith pixel
in the training sample data and the MOD500 data
respectively. A value of 1 denotes urban land, a value of
0 denotes non-urban land, and a value of −1 denotes
the background, which is not included in the calibra-
tion to improve efficiency. PULi denotes the class
value in a potential urban land data, which takes values
of 1 (potential urban land) or 0 (not potential urban
land). The pixels with DN values greater than
1 nW cm−2 sr−1 in the NTL data were recognized as
potential urban land (Dou et al 2017).

Further, we calculate the loss function after the
output layer based on the equation (11) (Jia et al 2014):

å= -( ) ( )l y z e z, log , 11
j

z
yj

where z denotes the inputs to the loss function; ( )l y z,
denotes the loss function of z; zj denotes the result of
estimating the jth class; and y denotes the class of z in
the training samples.

Finally, following Long et al (2015), we utilize the
stochastic gradient descent algorithm to perform the
optimization. The iteration step size is 1×10–7, and
the maximum number of iterations is 1 million. The
parameters of gamma and momentum both are 0.99.
Theweight decay is 0.0005.

3.3.Detecting global urban expansion from
1992–2016
First, we calibrate four FCNs with different remote
sensing data using the Caffe deep learning platform so
that the urban land at different times can be detected

6
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effectively (Jia et al 2014). Specifically, the first FCN
applied for detecting urban land in 1992, is calibrated
using the intercalibrated DMSP-OLS NTL data. The
second FCN applied for detecting urban land in 1996, is
calibrated on the basis of the radiance-calibratedDMSP-
OLS NTL data. The third FCN applied for detecting
urban land in 2000, 2006, and 2010, is calibrated on the
basis of the radiance-calibrated DMSP-OLS NTL and
LST data. The fourth FCN applied for detecting urban
land in 2016, is calibrated on the basis of theNPP-VIIRS
NTL and LST data. All of the FCNs involve NDVI,
longitude, and latitude.We thenuse the calibrated FCNs
to extract the global urban land for 1992, 1996, 2000,
2006, 2010, and 2016, respectively. We follow this step

with the post-classification processing described below
to ensure that the extracted global urban lands in
different years are comparable. Because urban land has
relatively high population densities, stronger NTL, and
lower NDVI values, the areas of urban expansion
generally show increased population densities and NTL
and decreased NDVI values (Elvidge et al 2007, He et al
2014). In contrast, areas that have been transformed
from urban land to non-urban land usually show
decreased population densities and NTL and increased
NDVI values. Therefore, we correct the extracted global
urban land using the NTL, NDVI, and population
densities from the HYDE dataset. The procedure can be
represented by equation (12):

Figure 3.The correlation between the urban expansion area and the growth in urban population. (a)The period of 1992–2000; (b) the
period of 2000–2010; (c) the period of 2010–2016; (d) the period of 1992–2016.

=
¹ - = ¹ =⎪

⎪

⎧
⎨
⎩

( ) ( )
( )Urban

UD andUrban or UD and Urban

Urban Otherwise

1, 1 1 1 1

,
, 12i j

Cor i j
Pre

i j
Pre

i j
Post

i j
Post

i j
,

, , , ,

,
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Figure 4.An accuracy assessment using finer-resolution remote sensing data. *The ten selected cities with populations above 10
million are listed alphabetically by names. Please refer to table 2 for the accuracy associatedwith all of the selected cities.
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Table 2.An accuracy assessment of urban expansion results for the selected cities.

This study GHS built-up GHS SMOD ESACCI

Continent Country City

Population circa 2016

(million persons) Kappa OAa(%) OEa(%) CEa(%) Kappa OAa(%) OEa(%) CEa(%) Kappa OAa(%) OEa(%) CEa(%) Kappa OAa(%) OEa(%) CEa(%)

Africa Egypt Cairo 19.12 0.51 92.10 32.87 53.67 0.51 96.63 58.80 28.23 0.48 96.19 57.41 39.07 0.30 95.85 78.70 38.67

Nigeria Lagos 13.66 0.50 90.59 50.14 39.22 0.01 78.06 85.51 88.04 0.09 71.94 91.59 94.83 0.06 84.81 89.57 80.65

Uganda Kampala 2.01 0.41 96.36 65.82 41.94 0.33 93.61 55.70 69.96 0.09 88.99 78.48 90.09 0.37 95.27 61.39 59.33

Rwanda Kigali 1.29 0.78 96.16 28.57 10.00 0.45 90.82 55.56 41.67 0.08 71.95 90.48 94.87 0.47 91.32 55.56 37.78

Zambia Ndola 0.51 0.54 96.88 52.63 33.33 0.14 94.61 86.84 77.27 0.00 90.95 94.74 96.00 0.27 96.12 81.58 41.67

Mozambique Beira 0.45 0.39 98.38 63.64 55.56 0.23 98.56 84.85 44.44 0.12 98.11 90.91 80.00 0.23 98.56 84.85 44.44

Asia China Beijing 21.24 0.62 93.75 41.84 24.94 0.21 89.35 82.05 55.32 0.19 87.20 78.13 68.34 0.30 89.90 74.03 48.86

India Mumbai 21.36 0.59 93.15 44.27 27.93 0.22 88.60 79.47 59.69 0.03 77.91 89.60 92.22 0.23 89.48 80.53 51.66

Vietnam HoChi

MinhCity

7.50 0.69 88.33 20.62 26.25 0.29 80.10 75.14 24.79 0.04 66.48 76.55 73.14 0.37 81.52 66.38 24.68

Indonesia Medan 2.23 0.67 94.50 41.28 14.63 0.13 88.42 88.59 63.04 0.06 81.52 96.64 95.76 0.12 88.53 89.60 62.65

Turkey Malatya 0.43 0.71 97.88 28.07 26.79 0.17 96.25 89.47 40.00 0.37 95.90 66.67 53.66 0.00 96.04 100 100

Malaysia Ipoh 0.75 0.58 90.38 33.52 38.89 0.38 89.68 69.78 27.63 0.42 90.31 67.03 22.08 0.39 88.91 64.84 39.05

Europe France Paris 10.93 0.48 86.60 52.35 32.12 0.22 83.79 82.16 32.11 0.19 83.39 84.83 34.56 0.11 83.10 92.09 22.92

UnitedKingdom London 10.43 0.32 93.48 69.84 57.55 0.10 93.43 92.11 71.11 0.04 93.03 95.75 84.21 0.07 93.73 95.34 70.51

Italy Milan 3.10 0.45 88.63 57.07 37.37 0.12 86.50 90.92 44.55 0.17 86.24 85.71 50.14 0.05 86.13 96.35 55.24

Poland Warsaw 1.73 0.50 95.92 60.65 25.28 0.20 94.68 86.69 42.31 0.24 94.42 81.66 51.56 0.14 94.37 90.83 55.07

Greece Thessaloniki 0.73 0.18 76.77 64.18 71.08 0.20 86.10 85.07 28.57 0.03 82.23 94.03 78.95 0.16 84.28 85.07 54.55

Russia Tyumen 0.63 0.37 97.46 69.64 50.00 0.03 97.46 98.21 50.00 0.03 97.39 98.21 71.43 0.00 97.46 100 50.00

Latin America and the

Caribbean

Brazil Sao Paulo 21.30 0.47 87.94 59.33 24.17 0.07 83.64 95.15 36.99 0.10 82.89 90.62 55.94 0.20 84.91 85.46 25.41

Rio de Janeiro 12.98 0.33 91.47 50.64 69.90 0.09 95.57 94.33 64.47 0.17 95.10 86.55 68.47 0.11 95.19 91.81 72.73

Mexico Guadalajara 4.92 0.66 92.24 34.87 22.60 0.32 88.17 76.95 18.37 0.30 86.34 72.33 44.83 0.30 88.13 78.67 14.94

Guatemala Guatemala 2.99 0.63 93.84 30.46 35.64 0.26 91.99 81.61 30.43 0.00 84.33 91.38 90.68 0.15 91.47 90.23 34.62

Colombia Valledupar 0.43 0.74 99.71 34.62 15.00 0.29 99.42 80.77 37.50 0.29 99.30 76.92 60.00 0.19 99.40 88.46 40.00

Brazil Palmas 0.15 0.42 96.63 26.00 68.91 0.00 98.19 100 100 0.69 98.65 12.00 42.11 0.38 98.44 72.00 36.36

NorthernAmerica United States Los Angeles 12.32 0.18 82.27 75.83 66.42 0.16 84.88 85.08 57.64 0.13 84.77 87.62 59.95 0.14 84.92 86.69 58.01

NewYork 18.60 0.08 81.72 83.51 79.32 0.15 83.01 77.94 72.85 0.09 82.21 83.39 78.38 0.10 87.06 91.39 60.24

Portland 2.03 0.59 91.00 41.61 27.95 0.25 87.71 82.38 23.36 0.21 87.29 85.23 27.27 0.21 86.91 83.56 37.58

Philadelphia 5.60 0.28 88.62 65.48 66.80 0.20 91.11 83.32 56.93 0.16 91.09 87.28 59.15 0.11 91.62 92.46 48.30

Springfield 0.65 0.43 92.21 64.89 29.46 0.12 88.82 88.44 69.05 0.14 90.25 89.78 48.89 0.06 90.34 96.00 40.00

Canada Victoria 0.36 0.16 85.23 82.14 65.52 0.16 86.71 85.96 55.56 0.04 86.71 96.49 66.67 0.10 84.01 85.96 73.33

Oceania Australia Sydney 4.54 0.60 94.88 37.84 36.63 0.22 93.60 85.11 32.30 0.13 92.88 90.71 56.13 0.18 93.12 87.30 48.33

NewZealand Auckland 1.36 0.17 69.51 31.65 81.82 0.17 89.42 83.54 67.50 0.08 85.67 84.81 83.10 0.14 89.76 87.34 67.74

Fiji Suva 0.18 0.38 81.73 59.09 40.00 0.00 78.85 100 50.00 0.00 74.04 100 100 0.00 78.85 100 50.00

Australia GoldCoast 0.60 0.40 93.81 39.82 66.00 0.51 96.63 58.80 28.23 0.26 96.59 77.61 65.12 0.39 96.55 67.80 43.56

Average 0.47 90.89 49.85 43.02 0.20 90.13 82.54 49.70 0.15 87.42 83.27 66.99 0.19 90.47 84.47 49.67

a OA: overall accuracy, OE: omission error, CE: commission error.
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where Urbani j
Cor
, denotes the value in the corrected

urban land data; i indicates the year; j indicates the
pixel; Urbani j

Pre
, andUrbani j

Post
, denote the values in the

urban land data in the years before and after the ith
year, respectively. The value of 1 denotes urban, while
0 denotes non-urban. UDi j

Pre
, and UDi j

Post
, denote the

possible conversion to urban land of the jth pixel in the
previous period and the latter period of the ith year.
For these quantities, the value of 1 denotes the

conversion from non-urban land to urban land; the
value of−1 denotes the transformation of urban land
into non-urban land; and the value of 0 denotes an
uncertain conversion. UDi j

Pre
, can be calculated using

the following equation:

where Pop ,i j, NTL ,i j, and NDVIi j, denote the popula-

tion density, NTL, and NDVI corresponding to the ith
year, respectively. Pop ,i j

Pre
,

NTL ,i j
Pre
, and NDVIi j

Pre
,

=
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Figure 5.The resulting global urban expansion, 1992 to 2016. (a) Spatiotemporal patterns of global urban expansion*; (b) urban
expansion in all world regions; (c)urban expansion by countries**. *Ten urban agglomerations with populations above 10million are
listed. **The countries that contributemore than 1%of theworldwide urban expansion area are included.
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denote the population density, NTL, and NDVI in the
year before the ith year, respectively. UDi j

Post
, can be

calculated using the following equation:

where Pop ,i j
Post
,

NTL ,i j
Post
, and NDVIi j

Post
, denote the

population density, NTL, and NDVI in the year after
the ith year, respectively. Finally, we obtain informa-
tion on the global urban expansion from1992–2016.

4. Results

4.1. Accuracy assessment
We first evaluate the estimated urban expansion area
resulting from this study at the national level using
population census data (Sutton 2003, Zhang and
Seto 2011). Using census data provided by the United
Nations, we analyze the relationships between the
estimated growth of urban land and the growth of

urban population at the national level for 1992–2000,
2000–2010, 2010–2016, and 1992–2016. The esti-
mated urban land expansion is strongly correlated

(R2�0.5) with the census data at a statistically
significant level of 0.01 (figure 3).

Following the procedure presented by Potere et al
(2009), we then use finer-resolution remote sensing
data (Landsat imagery with a 30 m resolution) to eval-
uate the estimated urban expansion (figure 4). During
this process, we select a total of 34 cities as samples that
represent various levels of socioeconomic conditions
in different regions using the stratified sampling
approach introduced by Angel et al (2016) based on
urban population and location (figure 1). The selected
cities include two cities from group 1 (with popula-
tions greater than 10 million), two cities from group 2
(with populations between 1 million–10 million), and
two cities from group 3 (with populations less than 1

Table 3.The resulting global urban expansion, 1992 to 2016.

Urban land in 1992 Urban land in 2016

Growth in urban land from

1992 to 2016

Region/country* Area (km2) Percentage** Area (km2) Percentage** Area (km2) Percentage***

Asia 65 629 23.90% 209 815 33.78% 144 186 41.61%

China 15 865 5.78% 88 047 14.17% 72 182 20.83%

India 8012 2.92% 22 450 3.61% 14 438 4.17%

Turkey 1622 0.59% 9066 1.46% 7444 2.15%

Iran 2905 1.06% 8721 1.40% 5816 1.68%

Saudi Arabia 1646 0.60% 6657 1.07% 5011 1.45%

Vietnam 190 0.07% 4689 0.75% 4499 1.30%

Indonesia 1685 0.61% 6076 0.98% 4391 1.27%

Malaysia 1189 0.43% 5026 0.81% 3837 1.11%

NorthAmerica 78 856 28.71% 148 535 23.91% 69 679 20.11%

United States 70 704 25.74% 137 093 22.07% 66 389 19.16%

LatinAmerica and theCaribbean 36 191 13.18% 99 376 16.00% 63 185 18.24%

Brazil 15 181 5.53% 43 998 7.08% 28 817 8.32%

Argentina 5528 2.01% 16 905 2.72% 11 377 3.28%

Mexico 5321 1.94% 13 249 2.13% 7928 2.29%

Europe 81 478 29.67% 121 339 19.53% 39 861 11.50%

Italy 7688 2.80% 13 141 2.12% 5453 1.57%

France 7706 2.81% 13 018 2.10% 5312 1.53%

Spain 2971 1.08% 8216 1.32% 5245 1.51%

Russia 21 000 7.65% 24 639 3.97% 3639 1.05%

Africa 7700 2.80% 27 597 4.44% 19 897 5.74%

SouthAfrica 2957 1.08% 8126 1.31% 5169 1.49%

Oceania 4798 1.75% 14 481 2.33% 9683 2.79%

Australia 4412 1.61% 12 762 2.05% 8350 2.41%

Theworld 274 652 100.00% 621 143 100.00% 346 491 100.00%

*The countries that contributemore than 1%of theworldwide urban expansion area are included.
**Percentage of global urban land area.
***Percentage of global urban expansion area.
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million) located in each of the five following regions:
Asia, Africa, Europe, Northern America, and Latin
America and the Caribbean. We also selected two
cities from group 2 and two cities from group 3 in
Oceania, where no city has a population greater than
10 million (figure 1). We then extract the areas of
urban expansion between 1992–2016 for the selected
cities through visual interpretation of the Landsat ima-
ges as reference data. In comparing the estimated
urban expansion data obtained using the FCN and the
reference data derived from the Landsat imagery, we
calculate the OA, the kappa coefficient, the commis-
sion error (CE), and the omission error (OE) accord-
ing to Olofsson et al (2014) (table 2, figure 4). The
assessment results in the average values of 90.9%,
0.47%, 43.0%, and 49.9% for OA, kappa, CE, and OE,
respectively (table 2, figure 4). Among the selected
cities, Kigali in Rwanda displays the highest kappa
value of 0.78 and is followed by Valledupar in Colum-
bia andMalatya in Turkey, which display kappa values
between 0.70 and 0.75 (table 2). Six cities, including
Ho Chi Minh City in Vietnam, Medan in Indonesia,
and Guadalajara in Mexico, display kappa values
between 0.6–0.7 (table 2). Seven cities, including
Mumbai in India; Portland, Oregon in the United
States; and Cairo in Egypt, display kappa values
between 0.5–0.6 (table 2).

In addition, we compare the accuracy of our
results with that of existing global urban expansion
data with reference to Schneider et al (2010) and
Zhou et al (2015). Among the six existing datasets
that contain global urban expansion data (table 1), we
first select the GHS built-up data, the GHS SMOD
data, and the ESACCI data for comparison; these
datasets have spatial resolutions and temporal cover-
age that are similar to those used in this study
(tables 1–2, figure 4). We then assess the accuracy of
these datasets using the reference data extracted from
Landsat imagery for the selected cities and compare
them with our results. This comparison shows that
the accuracy of the results produced by this study is
much higher than those of the existing datasets
(table 2, figure 4). Specifically, the GHS built-up data
display the average values of 90.1%, 0.20%, 49.7%,
and 82.5% for OA, kappa, CE, and OE, respectively
(table 2). The GHS SMOD data display the average
values of 87.4%, 0.15%, 67.0%, and 83.3% for OA,
kappa, CE, and OE, respectively (table 2). The
ESACCI data display the average values of 90.5%,
0.19%, 49.7%, and 84.5% for OA, kappa, CE, and
OE, respectively (table 2). The average OA and kappa
of the results from this study are 0.4%–3.5% and
0.27–0.32 higher than those of these three global
urban expansion datasets, respectively, whereas the
average CE and OE obtained in this study are 6.7%–

24.0% and 32.7%–34.6% lower (table 2).

4.2. Global urban expansion from1992 to 2016
The world has experienced rapid urban expansion.
The global urban land increased from 274.7 thousand
km2 to 621.1 thousand km2; these values correspond
to an urban expansion area of 346.4 thousand km2 and
an annual growth rate of 3.5% (figure 5, table 3).

Asia displays the largest urban expansion area. Its
urban land area has increased from 65.6 thousand
km2

–209.8 thousand km2. These values correspond to
an increase in urban area of 144.2 thousand km2,
which accounts for 41.6% of the global urban expan-
sion area (figure 5(b), table 3). Among the countries in
Asia, China displays the largest urban expansion area
of 72.2 thousand km2; this value is 20.8% of the global
urban expansion area. The urban areas in India and
Turkey increased by 14.4 thousand km2 and 7.4 thou-
sand km2, and these values account for 4.2% and 2.2%
of the global urban expansion area, respectively. The
urban expansion areas of five countries, Iran, Saudi
Arabia, Vietnam, Indonesia, and Malaysia, contribute
between 1%–2%of the global urban expansion area.

In Northern America, the urban land area
increased by 69.7 thousand km2 (from 78.9 thousand
km2

–148.5 thousand km2), and this increase accounts
for 20.1% of the global urban expansion area
(figure 5(b), table 3). In particular, the United States
increased its urban land area by 66.4 thousand km2,
which accounts for 19.2% of the global urban expan-
sion area. In Latin America and the Caribbean, the
urban land area increased from 36.2 thousand
km2

–99.4 thousand km2. This change corresponds to
a net gain of 63.2 thousand km2, which accounts for
18.2% of the global urban expansion area (figure 5(b),
table 3). Within this region, Brazil, Argentina, and
Mexico increased their urban land areas by 28.8 thou-
sand km2, 11.4 thousand km2, and 7.9 thousand km2

and account for 8.3%, 3.3%, and 2.3% of the global
urban expansion area, respectively.

In Europe, the urban land area increased from81.5
thousand km2

–121.3 thousand km2. This increase
corresponds to an urban expansion area of 39.9 thou-
sand km2, which accounts for 11.5% of the worldwide
growth (figure 5(b), table 3). Three countries in Eur-
ope, Italy, France, and Spain, increased their urban
areas by between 5.0 thousand km2

–5.5 thousand
km2, taking up approximately 1.5% of global urban
expansion area. Russia expanded its urban areas by 3.6
thousand km2, taking up 1.1% of global urban expan-
sion area.

The areas of urban expansion in Africa and Ocea-
nia account for less than 10% of the worldwide growth
(figure 5(b), table 3). In Africa, the urban land area
grew from 7.7 thousand km2 to 27.6 thousand km2, an
additional 19.9 thousand km2, which accounts for
5.7% of the global growth. Within this region, South
Africa increased its urban land area by 5.2 thousand
km2, which accounts for 1.5% of the global expansion.
In Oceania, the urban land area increased from 4.8
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Figure 6.The advantages of the proposed FCN. Beijing, China is taken as an example. (a)The integration ofmulti-sources remotely
sensed data. (b)The integration of information overmultiple scales. (c)The repetitive application of FCNs calibrated using training
samples from a single year.
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thousand km2
–14.5 thousand km2. This change corre-

sponds to an urban expansion area of 9.7 thousand
km2, which accounts for 2.8% of the worldwide
growth. Within this region, Australia increased its
urban land area by 8.4 thousand km2, which corre-
sponds to 2.4%of the global expansion.

5.Discussion

5.1. The proposed FCNcan effectively detect global
urban expansion
Presently, many classification approaches are utilized
to facilitate the detection of global urban expansion
(Chen et al 2015, Pesaresi et al 2016, UCL-Geo-
matics 2017). For example, Chen et al (2015) detected
global urban expansion between 2000–2010 using
pixel- and object-based methods with knowledge
(POK). Pesaresi et al (2013, 2016) used a symbolic
machine learning method to detect global urban
expansion from 1975–2015. UCL-Geomatics (2017)
applied an unsupervised classificationmethod to study
global urban expansion from 1992–2015. However,
effective methods to support the study of global urban
expansion are still lacking. For example, the POK
method requires large amounts of manual work and
time. Unsupervised classification methods and sym-
bolic machine learning methods ignore the features of
urban land overmultiple scales, such as shape, texture,
and background information, resulting in the confu-
sion of urban land and barren land. In addition, the
lack of training samples of historical urban land areas
around theworld has led to relatively low accuracy and
inconsistencies among the global urban land areas
extracted using classificationmethods.

The proposed FCN has advantages in integrating
remote sensing data from multiple sources, combin-
ing features over multiple scales, and making up for
the lack of historical training samples. First, FCNs
inherit the abilities of artificial neural networks and
permits the adaptive processing of massive data from
multiple sources (LeCun et al 2015). The FCN used in
this study employs large numbers of neurons in the
convolutional layers to obtain information from dif-
ferent data sources, including NTL, NDVI, LST, long-
itude, and latitude. The fusion of various types of data
is made possible through the use of a nonlinear trans-
formation function in the activation layers. The
method then selects appropriate information to effec-
tively characterize the socioeconomic and natural
attributes of urban land and provides abundant and
reliable information for urban land extraction
(figures 2(b) and 6(a)). Second, the FCN uses three
convolutional layers and one pooling layer to obtain
urban land information at the pixel, neighborhood,
and urban region scales. It effectively distinguishes
urban built-up areas from barren land (figures 2(b),
6(b)). Third, when calibrated using training samples at
one time, the FCN can be applied repeatedly due to its

repetitive utilization of weights, which it inherits from
deep learningmodels (Long et al 2015). This advantage
solves the problems associated with a lack of historical
training samples of urban land around the world but
also improves the continuity and comparability of the
extracted urban land at different times (figure 6(c)).
Consequently, the proposed FCN can accurately
extract urban land areas at one time and has the ability
to integrate data from multiple sources and features
over multiple scales (figures 6(a), (b)). For instance,
the extraction of urban land in Beijing in 2016 per-
formed using the FCN is associated with a kappa index
of 0.79 and anOAof 95.1% (figures 6(a), (b)). Further-
more, we can effectively identify urban land at differ-
ent times by repeatedly using the FCN. The detected
urban expansion in Beijing from 1992 to 2016 is asso-
ciated with a kappa index of 0.62 and an OA of 93.8%
(figure 6(c)). In addition, the proposed FCN can auto-
matically extract urban land areas from remote sen-
sing data, which save large amounts of manual work
and time. Thus, it provides an effective approach for
detecting global urban expansion.

Several long-term time series of surface reflectance
data are available for the study of land use dynamics.
These datasets include those collected by MERIS,
AVHRR, PROBA-V, and SPOT-VGT and the high-
resolution radar data obtained by TerraSAR-X, Tan-
DEM-X, and Sentinel 1, as well as crowd-sourced data,
such as OpenStreetMap (Esch et al 2017, UCL-Geo-
matics 2017). These data are obtained from multiple
sources and have different spatial and temporal reso-
lutions. The proposed FCNmethod can easily adapt to
process these datasets. Thus, it has great potential to be
widely used to detect global urban land expansion
using time series data.

5.2. Future perspectives
In this study, we produced a new global urban
expansion dataset using the proposed FCN. This
dataset has several merits over existing datasets
(table 1). First, it provides adequate spatial informa-
tion with 1 km resolution, which ismuchmore precise
than the HYDE dataset. Second, our dataset includes
continuously comparable urban land data from
1992–2016, filling gaps in existing datasets of MGIS,
GLC30 and IMPSA. Third, our dataset reveals higher
accuracy than the GHS dataset, the FROM-GLC
dataset and the ESACCI dataset.

In addition, the inconsistent definitions of urban
land have been recognized as a primary reason for the
discrepancies of existing global urban land datasets
(Liu et al 2014). In this study, we followed Schneider
et al (2009, 2010) and defined urban land as built-up
area, i.e. the area dominated (more than 50% in cover)
by non-vegetated, human-constructed elements, such
as roads, buildings, runways, and industrial facilities
(Liu et al 2014). Such definition makes our dataset
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comparable with most existing datasets with similar
resolution (table 1).

However, our study also has some limitations. For
example, the blooming effects ofNTL data and the dis-
continuity between theDMSP-OLS data and the NPP-
VIIRS data still result in relatively high OE and CE in
some cities (e.g. Los Angeles, New York, and Victoria)
(table 2).

In the future, we will attempt to adjust the number
of convolutional layers and the size of the convolu-
tional kernels of our FCN using high-resolution data
(Long et al 2015, Fu et al 2017) to enable the detection
of global urban expansion at resolutions finer than 1
km. We will also quantify the spatiotemporal patterns
of global urbanization based on the results (Seto et al
2011, Liu et al 2016a). In addition, we will use the eco-
logical models of Carnegie-Ames-Stanford approach,
Integrated Valuation of Ecosystem Services and Tra-
deoffs, and Service Path Attribution Networks to eval-
uate the impacts of global urban expansion on
ecosystems (McDonald et al 2008, 2013, Bren
d’Amour et al 2017).

6. Conclusions

We developed an FCN-based method to perform
detection of global urban expansion. The effectiveness
of this method lies in its ability to integrate remote
sensing data from multiple sources, to combine
features over multiple scales and to address the lack of
training samples of historical urban land. Given the
richness of several types of remotely sensed data, the
proposed FCNhas great potential to bewidely used.

We obtain global urban expansion information
covering the last three decades using the proposed
FCN. An accuracy assessment based on census data
reveals that the extracted urban land displays a strong
correlation (R2�0.5) with population growth at a
significance level of 0.01. An accuracy assessment
based on finer-resolution Landsat data indicates that
our results display an average OA of 90.9% and an
average kappa value of 0.47. The accuracy of our
results is higher than those of existing global datasets,
specifically the GHS built-up data, the GHS SMOD
data, and the ESACCI data; compared to these existing
datasets, the average OA and average kappa values
improve by 0.4%–3.5% and 0.27–0.32, respectively.

The results show that the world has experienced
large-scale urban expansion from 1992–2016. The
global urban land area increased from 274.7 thousand
km2

–621.1 thousand km2, which is an increase of
346.4 thousand km2 and a growth by 1.3 times.
Among the six world regions, Asia displays the largest
urban expansion area of 144.2 thousand km2 and
accounts for 41.6% of the worldwide growth. Among
all of the countries in the world, China displays the lar-
gest urban expansion area of 72.2 thousand km2 and
accounts for 20.8%of the global increase.
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