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a b s t r a c t

Providing accurate assessments of the relationships between urban landscape patterns and PM2.5

pollution is essential for improving urban sustainability in China. Accordingly, this paper uses a
geographically weighted regression model to reveal the relationships between urban landscape patterns
and PM2.5 pollution at different scales in China. First, we identified the level of PM2.5 pollution in China
and quantified the urban landscape patterns based on the landscape metrics in 2015. Then, we analyzed
the relationships between urban landscape patterns and PM2.5 pollution using geographically weighted
regression with the county as the basic analytical unit. Finally, the spatial characteristics of the re-
lationships between urban landscape patterns and PM2.5 pollution were analyzed at the national,
regional and provincial scales. We found that the PM2.5 pollution in China was closely related to urban
landscape patterns, with obvious spatial heterogeneity. The total area with a significant correlation
between the urban landscape patterns (which were measured using the percentage of urban landscape,
edge density, and patch density) and PM2.5 pollution ranged from 2.07� 106 km2 to 2.26� 106 km2,
accounting for 42.55%e46.59% of the total PM2.5-polluted area in China. The high correlations were
concentrated mainly in five provinces, namely, Xinjiang, Shaanxi, Fujian, Chongqing and Guangdong. We
also found that the relationships between urban landscape patterns and PM2.5 pollution were stronger in
urban agglomerations. The total area with a significant correlation between the urban landscape patterns
and PM2.5 pollution was 9.20� 105 km2, occupying 65.55% of the entire urban agglomeration area; this
percentage was nearly 14% higher than the national average level. The strongest relationship was
observed in the Northern Tianshan Mountains urban agglomeration. Contrasting with previous studies,
our study fully considered the spatial autocorrelation and spatial differences between variables by using
geographically weighted regression and clarified the spatial heterogeneity of the relationships between
urban landscape patterns and PM2.5 pollution in China. Our findings imply that special attention must be
paid to the urban landscape patterns in urban agglomerations during future urban development in
China. Furthermore, effective regulations must be implemented to reduce the impacts of urban land-
scape patterns on PM2.5 pollution by controlling urban expansion and optimizing the spatial patterns of
urban landscapes.

© 2019 Elsevier Ltd. All rights reserved.
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1. Introduction

PM2.5 pollution refers to the presence of fine particulate matter
in the atmosphere at a concentration and interval that causes it to
interfere with the environment or the comfort, health and welfare
of human beings (ISO,1994;WHO, 2005). Urban landscape patterns
(ULPs) refer to the composition and spatial configuration of urban
landscape (i.e., the region dominated by non-vegetated, human-
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constructed elements, such as roads, buildings, runways, and in-
dustrial facilities) (Forman, 2014; Liu et al., 2014). The ULPs affect
PM2.5 pollution in two ways: first, ULPs alter anthropogenic PM2.5
emissions by changing resident travel modes and energy utilization
behaviors as well as the industrial layout (Larkin et al., 2016).
Second, ULPs alter PM2.5 pollution by influencing the regional
climate and changing the diffusion conditions of atmospheric
pollutants (Huang et al., 2014; Battaglia et al., 2017). From 1992 to
2015, the extent of urban land in China expanded from 12,000 km2

to 73,000 km2, representing a growth of 5 times (Xu et al., 2016b).
Rapidly changing ULPs have led to the aggravation of PM2.5 pollu-
tion, which seriously threatens the health of residents and the
sustainable development throughout China (Borrego et al., 2006;
Xu et al., 2016a). Therefore, an accurate and effective assessment of
the relationships between ULPs and PM2.5 pollution is of great
significance for improving the urban environment, enhancing res-
idential health conditions and achieving sustainable urban devel-
opment in China (Han et al., 2014, 2015).

Many previous studies used the statistical ordinary least squares
(OLS) model to reveal the relationships between ULPs and PM2.5
pollution in China. For example, Jiang et al. (2017) used the struc-
tural equation model to investigate the relationship between urban
built-up areas and PM2.5 pollution in China, while Han et al. (2014)
used correlation analysis to quantify the impacts of urban built-up
areas on PM2.5 pollution in China. Lu et al. (2018) analyzed the
relationship between the urban construction land area and PM2.5
pollution in the Yangtze River Delta (YRD) region using correlation
analysis and multiple stepwise regression analysis. Similarly, Wu
et al. (2015) employed multiple stepwise regression, correlation
analysis and leave-one-out cross-validation to investigate the
impact of the proportion of urban construction land on PM2.5
pollution in Beijing. However, few studies have accurately deter-
mined the relationships between ULPs and PM2.5 pollution, mainly
because the OLS model is a global estimation method, which as-
sumes that the relationships remain stable across space. Hence, this
method reflects only global relationships, and thus, it lacks the
ability to interpret spatial differences within those relationships
(Du et al., 2018; Zhang and Gong, 2018). Nevertheless, the re-
lationships between ULPs and PM2.5 pollution vary with geography
and thus exhibit significant spatial heterogeneity and spatial
autocorrelation (Yu et al., 2013). Therefore, it is difficult to effec-
tively reveal the relationships between ULPs and PM2.5 pollution
using the OLS model.

Tomore effectively quantify the relationships between ULPs and
PM2.5 pollution in China, some researchers have used spatial
econometric analysis to conduct relevant studies. For example,
Yuan et al. (2018) selected 269 Chinese cities as sample cities and
used the spatial lag model (SLM), the spatial error model (SEM) and
the spatial Durbin model (SDM) to explore the impacts of ULPs on
PM2.5 pollution. The spatial effects are considered in the SLM, SEM
and SDM models, which can solve the spatial autocorrelation of
PM2.5 concentration in nearby cities. However, these three models
are essentially global regression models, and the constants and
coefficients of the influencing factors in these models are the same
in the different regions; thus, the spatial heterogeneity of the re-
lationships between ULPs and PM2.5 pollution cannot be revealed
(Yang et al., 2017). Therefore, it is necessary to use a newmethod to
quantify the spatiotemporal patterns of the relationships between
the ULPs and PM2.5 pollution throughout China.

The geographically weighted regression (GWR) model is a
spatial analysis approach used to reveal the spatial relationships
between variables by establishing local regression models for
different regionswithin a certain spatial range (Fotheringham et al.,
2002). In addition to fully considering the local effects of the re-
lationships between variables in different regions, GWR detects the
spatial heterogeneity that can accurately and effectively reflect
those relationships (Brunsdon et al., 1996, 1998; Su et al., 2012). In
recent years, the GWR model has been widely employed to reveal
the spatial patterns of the relationships between different vari-
ables. For example, Wang et al. (2018) used the GWR model to
analyze the relationships among the spatiotemporal population
distribution, land use and nighttime lights in China from 1990 to
2010, while Li et al. (2017) used the GWR model to evaluate the
impacts of urbanization on the ULP in Beijing. Furthermore, Yu et al.
(2013) detected the relationships between land use and water
quality in Shenzhen based on GWR. Evidently, the GWR model
provides an effective way to reveal the relationships between ULPs
and PM2.5 pollution in China.

This study attempts to reveal the relationships between the
ULPs and PM2.5 pollution throughout China. First, we analyzed the
spatial patterns of PM2.5 pollution and quantified the ULP in 2015 at
multiple scales. Then, we used the GWR model to analyze the re-
lationships between ULPs and PM2.5 pollution at the national scale
as well as at the regional and provincial scales. Finally, we discussed
the advantages of the GWR model and the relationships between
the ULP and PM2.5 pollution in China's major UAs. This study fully
considers the spatial autocorrelation and spatial differences be-
tween variables using the GWR model, clarifies the spatial het-
erogeneity of the relationships between ULPs and PM2.5 pollution,
and provides reliable support for urban landscape planning to
improve the sustainability of cities in China.

2. Study area and data

2.1. Study area

We focused on the entire country of China and used 2359
counties as the basic analytical units (Fig. 1). We then analyzed the
relationships between ULPs and PM2.5 pollution in China at the
national, regional and provincial scales. According to the Strategies
and Policies for Regional Coordinated Development issued by the
Development Research Center of the State Council in 2005, China
was divided into eight economic regions: Northeast China (NEC),
Northern Coastal China (NCC), Eastern Coastal China (ECC),
Southern Coastal China (SCC), Southwest China (SWC), Northwest
China (NWC), the Middle Reaches of the Yellow River (MRYLR), and
the Middle Reaches of the Yangtze River (MRYTR). These economic
regions were used as the statistical units at the regional scale, while
the 34 provincial-level administrative regions in China were uti-
lized as the statistical units at the provincial scale (Fig. 1).

2.2. Data

Urban land data for 2015 were obtained from the urban land
information dataset in China established by He et al. (2014) and Xu
et al. (2016b), and the data had a spatial resolution of 1 km. The data
were produced using the support vector machine classification
method by integrating the nighttime light data, land surface tem-
perature data, and normalized difference vegetation index data.
The overall accuracy of these data was 92.62%, the quantity
disagreement was 1.49%, the allocation disagreement was 5.89%,
and the Kappa coefficient was 0.60; thus, the data can accurately
reflect the ULPs of China in 2015. Recently, urban land data have
been widely used for analyzing the ULP and its impacts on envi-
ronments in China. For instance, Liu et al. (2019) used the data to
analyze the ULP and evaluate the impacts of ULP on the environ-
mental sustainability of the agro-pastoral transitional zone of
northern China.

The annual average PM2.5 concentration data for 2015 were
obtained from “The global PM2.5 concentration dataset” released by



Fig. 1. Study area.
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the Atmospheric Composition Analysis Group at NASA Langley
Research Center for the removal of dust and sea salt. These data
were produced based on the approach of the GEOS-Chem chemical
transport model, withmonitoring data acquired fromNASAMODIS,
MISR, and SeaWIFS. The PM2.5 concentration in the dataset was in
accordance with out-of-sample cross-validated PM2.5 concentra-
tions frommonitors, with the R2 reaching 0.81 (van Donkelaar et al.,
2016).

The administrative boundaries of the entire country, provinces,
and counties at a 1:1,000,000 scale were obtained from the Na-
tional Geomatics Center of China.
3. Methods

3.1. Analyzing the distribution of PM2.5 pollution

Referring to the study by He et al. (2016), we followed the air
quality guideline (AQG) and the Interim Target-1 (IT-1) proposed by
the World Health Organization, and we quantified the degree of
PM2.5 pollution for each county based on the annual average PM2.5

concentration in 2015. The regions with PM2.5 concentrations
above the AQG (10 mg/m3) were defined as polluted regions, and
these areas included lightly polluted regions (AQG to IT-1,
10e35 mg/m3), moderately polluted regions (IT-1 to 2IT-1,
35e70 mg/m3) and heavily polluted regions (>2IT-1, >70 mg/m3).
3.2. Quantifying the ULPs

Referring to the studies byWu et al. (2011) and Liu et al. (2018a;
2018b), three landscape metrics were selected to quantify the ULP
(Table 1). These landscape metrics included the percentage of ur-
ban land (PLAND), the patch density (PD) and the edge density (ED).
Among them, the PLAND indicator measures the proportion of
urban land in the landscape, the PD indicator quantifies the frag-
mentation of the urban landscape, and the ED indicator estimates
the complexity of the urban landscape shape (Liu et al., 2018a). The
three landscape metrics were selected because existing studies
have revealed that these metrics can effectively represent ULPs and
are highly correlated with PM2.5 pollution. Generally, a larger
PLAND value would result in more PM2.5 pollutant emissions (Han
et al., 2014). Higher PD and ED values represent more fragmented
and complex-shaped ULPs, i.e., more dispersed infrastructures and
services in residential, commercial and industrial areas, which
subsequently increases the energy consumption from commuting,
industrial processes and transportation and aggravates the emis-
sion of PM2.5 pollutants (Larkin et al., 2016; Liu et al., 2019). In
addition, the PLAND, PD and ED of urban land influence the
regional climate and affect the diffusion of atmospheric pollutants
(Irwin and Bockstael, 2007; Huang et al., 2014; Battaglia et al.,
2017).

With the support of Fragstats and ArcGIS, we first calculated
these three urban landscape metrics using the county as the basic
unit in 2015. Then, we calculated the mean values of the



Table 1
The landscape metrics used in this study.

Metric Equation Unit Range Description

Percentage of Urban
Land (PLAND)

PLAND ¼ Pi ¼Pn
j¼1aij
A

� 100

% 0< PLAND�100 The proportion of urban land in the landscape, where aij is the area (m2) of patch ij; A is the total landscape
area (m2).

Patch Density (PD) PD ¼ ni
A
� 106 1/

km2
0< PD The number of urban land patches per square kilometer. Higher values indicate more fragmented urban

land. ni represents the number of patches in the landscape of patch type i; A is the total landscape area (m2).
Edge Density (ED)

ED ¼
Pm

k¼1eik
A

�
104

m/
ha

0< ED The total edge length of urban land per hectare. Higher values indicate a more complex urban land shape.
eik is the total length (m) of edge patch type i and includes landscape boundary and background segments
involving patch type i; A represents the total landscape area (m2).
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abovementioned metrics for the whole country, the economic re-
gions, and the provinces. Finally, we used these mean values to
analyze the spatial patterns of the urban landscape at the national,
regional and provincial scales.
3.3. Quantifying the relationships between ULPs and PM2.5

pollution

The OLS model, a global regression model that reflects station-
ary and homogeneous relationships across space, can be expressed
as follows:

y¼b0 þ
Xn

k¼1

bkxk þ ε (1)

where y and xk are the dependent variable and the kth independent
variable, respectively, b0 and bk are the intercept and the local
estimated coefficient, respectively, n represents the number of in-
dependent variables, and ε is the error term.

SLM is a spatial autoregressive model that describes the spatial
correlation between dependent variables and mainly identifies
whether variables have spillover effects in the study area. Accord-
ing to Anselin (1988), SLM can be expressed as follows:

y¼ rWyþ Xbþ ε (2)

where y is the dependent variable; X is an (n� k) exogenous
explanatory variable matrix; r is the auto-regressive parameter; W
is an (n� k) spatial weight matrix, usually the adjacency matrix;
Wy is the spatial lag dependent variable of the spatial weight ma-
trix W, which reflects the effect of the independent variable X on
the dependent variable y; and ε is the random error vector.

The spatial dependence of SEM exists in the random error term,
which measures the influence of the error impact of the adjacent
region on the observed value in the sample region. Anselin (1988)
proposed the SEM as follows:

y¼Xbþ m;m ¼ lWmþ ε (3)

where y is the dependent variable; X is the (n� k) matrix, which
represents the explanatory variable;W is the spatial weight matrix;
l is the parameter of the spatial dependent error; b reflects the
impacts of the independent variables on the dependent variable; m
is the (n� 1) residual vector; and ε is the random error vector.

GWR is a local modeling tool optimized on the basis of the OLS
model. The GWR model can be expressed as follows:

yi ¼ b0ðui; viÞ þ
Xn

k¼1

bkðui; viÞxik þ εi (4)

where (ui, vi) represents the coordinates of sample point i; yi and xik
are the dependent variable and the kth independent variable,
respectively, of the local regression model; b0 (ui, vi) is the inter-
cept; bk (ui, vi) is the local estimated coefficient; n is the number of
independent variables; and εi is the error term. Data points that are
closer to the location of the sample point are more spatially con-
nected than those that are farther away, and thus, a distance decay
function is needed to determine the weights of the data points
within the spatial extent. Referring to the study by Yu et al. (2013),
the bisquare weighting function was used in this study, and it can
be expressed as follows:

Wik ¼
�
1� ðdik=bÞ2

�2
(5)

where Wik is the geographical weight of the kth data point with
regard to sample point i, dik is the distance between sample point i
and data point k, and b is the bandwidth, where a larger bandwidth
corresponds to a wider extent of the local regression model. As dik
becomes greater than b, the spatial weight turns to zero. Referring
to the study by Fotheringham et al. (2002), the optimal bandwidth
was selected according to the Akaike information criterion (AICc).

The output of the GWR model includes the adjusted R2, the t
value, the local estimated coefficient and the local R2. Among them,
the adjusted R2 is a measure of the overall fitness of the model,
ranging from the lowest fitness of 0 to the highest fitness of 1; a
higher value indicates a better model fit. In addition, for each
sample point, the local regression model contains a t value, a local
estimated coefficient, and a local R2 value. The t value is an index
used to test the level of significance of the local estimated coeffi-
cient, while the local estimated coefficient is an index that char-
acterizes the positive or negative relationships between the
independent variables and the dependent variable; furthermore,
the local R2 is an index employed to measure the goodness-of-fit of
the local regression model, where a higher local R2 value reflects an
independent variable with a stronger ability to interpret the
dependent variable (Clement et al., 2009; Yu, 2006). In the model
comparison section, we analyzed the abilities of the above four
models to address the spatial autocorrelation of variables by
calculating the global Moran's I of the residuals. Moran's I is an
important indicator used to measure spatial correlation, and it tests
whether adjacent regions in the whole study area are positively
correlated, negatively correlated or mutually independent. The
formula of Moran's I is as follows:

I¼
n
Pn
i¼1

Pn
j¼1

Wijðxi � xÞ

Pn
i¼1

Pn
j¼1

Wijðxi � xÞ2
¼

Pn
i¼1

Pn
js1

Wijðxi � xÞ�xj � x
�

S2
Pn
i¼1

Pn
j¼1

Wij

(6)

where n is the total number of regions in the study area, Wij is the
spatial weight, xi and xj are the attributes of region i and region j,
respectively, x is the average value of all attributes, and S2 is the
variance of the attributes.



Fig. 3. PM2.5 pollution in China in 2015.
Note: The percentage of polluted area in each economic region relative to the polluted
area in the whole country is shown in the figure.
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Based on the GWR model, we analyzed the relationships be-
tween the ULPs and PM2.5 pollution in China in 2015. To achieve
this purpose, we quantified only the relationships between the ULP
metrics and PM2.5 concentrations in the PM2.5 polluted regions, i.e.,
the regions with PM2.5 concentrations above the AQG (10 mg/m3),
while the other regions were excluded from this analysis. First, we
performed the GWR model using the county as the basic unit, with
the annual average PM2.5 concentration in 2015 as the dependent
variable and the PLAND, PD, and ED indicators as the independent
variables. Specifically, we used the GWR model to quantify the re-
lationships between PLAND and PM2.5 pollution, between PD and
PM2.5 pollution, and between ED and PM2.5 pollution. Then, refer-
ring to the study by Tu (2011), we identified the counties where the
PM2.5 pollution was significantly and positively correlated with the
three urban landscapemetrics according to the t value and the local
estimated coefficient. In addition, we identified the counties where
the local R2 was greater than 0.5 (i.e., where the urban landscape
metrics explained more than 50% of the variance in the PM2.5
pollution therein) as the area with the strong relationships be-
tween the urban landscape metrics and PM2.5 pollution. Finally, we
quantified the total area of the identified counties and used the
total area as an indicator to analyze the spatial relationships be-
tween the ULPs and PM2.5 pollution in 2015 at the national,
regional, and provincial scales (Fig. 2).

4. Results

4.1. The distribution of PM2.5 pollution

In 2015, PM2.5 pollutionwas present in more than half of China's
terrestrial area (Fig. 3, Table 2). Specifically, the total area of all
Fig. 2. Flow
PM2.5-polluted regions was 4.86� 106 km2, accounting for 51.09%
of China's entire land area. Among these areas, the areas of the
lightly polluted regions, moderately polluted regions and heavily
polluted regions were 3.71� 106 km2, 1.26� 106 km2 and
1.24� 105 km2, respectively, accounting for 36.53%, 13.27% and
1.30%, respectively, of China's total land area.

The PM2.5 pollution in China exhibited significant regional dif-
ferences (Fig. 3, Table 2). Among the eight economic regions, the
PM2.5-polluted regions in SWC and MRYLR were relatively large,
with areas of 1.01� 106 km2 and 1.00� 106 km2, respectively,
which collectively occupied more than 20% of the total polluted
area in China. The PM2.5-polluted regions in NCC, SCC and ECC were
relatively small, with areas of 3.70� 105 km2, 3.32� 105 km2 and
chart.



Table 2
The extents of polluted areas across each economic region in China and in the entire country.

Regions Heavily polluted Moderately polluted Lightly polluted Polluted area

Area (104 km2) Per N (%) Per E (%) Area (104 km2) Per N (%) Per E (%) Area (104 km2) Per N (%) Per E (%) Area (104 km2) Per N (%) Per E (%)

NCC 8.47 0.89 22.92 20.12 2.12 54.45 8.36 0.88 22.62 36.95 3.89 100
ECC 0.27 0.03 1.30 12.74 1.34 60.91 7.91 0.83 37.79 20.92 2.20 100
MRYTR 0 / / 41.25 4.34 58.48 29.28 3.08 41.52 70.53 7.42 100
NEC 3.60 0.38 4.57 33.16 3.49 42.01 35.70 3.76 45.23 72.46 7.62 91.81
SCC 0 / / 0.39 0.04 1.01 32.85 3.46 85.10 33.24 3.50 86.11
SWC 0 / / 0.87 0.09 0.64 99.90 10.51 73.26 100.77 10.60 73.90
MRYLR 0 / / 17.54 1.85 10.48 82.77 8.71 49.44 100.31 10.55 59.92
NWC 0 / / 0.00 0.00 0.00 50.38 5.30 12.57 50.38 5.30 12.57
The entire country 12.35 1.30 / 126.07 13.27 / 347.14 36.53 / 485.56 51.09 /

Note: Per N: The ratio of the polluted area to the total land area of the entire country.
Per E: The ratio of the polluted area to the total area of the corresponding economic region.
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2.09� 105 km2, respectively, all of which occupied less than 10% of
the entire polluted area in China.

The areas with severe PM2.5 pollutionweremainly concentrated
in Northeast China, North China and East China (Fig. 3). The total
areas of all heavily polluted and moderately polluted regions in
NCC, ECC, MRYLR and NEC were 2.86� 105 km2, 1.30� 105 km2,
4.13� 105 km2 and 8.17� 104 km2, respectively, occupying 77.37%,
62.21%, 58.48% and 46.58%, respectively, of the total land area of the
corresponding economic regions. Such proportions all exceeded
the national average level (14.57%). Among these economic regions,
the PM2.5 pollution was the most serious in NCC; the total areas of
the heavily polluted regions and moderately polluted regions in
NCC were 8.47� 104 km2 and 2.01� 105 km2, respectively, ac-
counting for 22.92% and 54.45%, respectively, of the entire area of
NCC.

4.2. The spatial patterns of the urban landscape

The ULP showed obvious spatial heterogeneity in China (Fig. 4,
Table 3). In 2015, at the national level, the average PLAND was
2.28%, the average PD was 0.0013/km2, and the average ED was
0.20m/ha (Fig. 4). Among the eight economic regions, ECC had the
largest proportion of urban land, the most fragmented urban
landscape and the most complicated urban landscape shape; the
PLAND, PD and ED in ECC were 6.09%, 0.0030/km2 and 0.53m/ha,
respectively, which were 1.67 times, 1.31 times and 1.65 times
higher than the corresponding national average levels, respectively.
In contrast, NWC had the lowest proportion of urban land and the
urban landscape with the simplest configuration; specifically, the
PLAND, PD and ED in NWC were 0.47%, 0.0005/km2 and 0.06m/ha,
respectively, which were equal to 20.61%, 38.46% and 30.00% of the
corresponding national average levels, respectively.

4.3. The relationships between ULPs and PM2.5 pollution

The relationships between the ULPs and PM2.5 pollution in
China also exhibited obvious spatial heterogeneity. The total area
with a significant correlation between the PLAND and PM2.5

pollution was 2.21� 106 km2, which occupied 45.43% of the entire
PM2.5-polluted area in China (Fig. 5a, Table 4). Among the eight
economic regions, NEC had the largest area (5.13� 105 km2, which
accounted for 70.06% of the total PM2.5-polluted area in NEC), with
a significant correlation between the PLAND and PM2.5 pollution
(Fig. 5b). At the provincial scale, all of the polluted regions in Bei-
jing, Shanghai, and Hong Kong had significant correlations between
the PLAND and PM2.5 pollution (Fig. 5c). The total areawith a strong
relationship between the PLAND and PM2.5 pollution was
9.50� 104 km2, which occupied 1.96% of the entire PM2.5-polluted
area in China. Furthermore, the PLAND distributions in Fujian and
Guangdong provinces were more closely related to the PM2.5
pollution than were those in the other provinces; in these two
provinces, the areas with strong relationships were 4.34� 104 km2

and 3.81� 104 km2, occupying 35.75% and 21.52%, respectively, of
the total PM2.5-polluted area in the corresponding provinces.

The total area with a significant relationship between the PD
and PM2.5 pollution was 2.07� 106 km2, occupying 42.55% of the
entire PM2.5-polluted area in China (Fig. 6a, Table 4). NEC exhibited
the largest total area (5.00� 105 km2, accounting for 69.04% of the
entire PM2.5-polluted area in NEC), with a significant correlation
between these two variables (Fig. 6b). At the provincial scale, all of
the polluted regions in Beijing and Shanghai had significant cor-
relations between the PD and PM2.5 pollution (Fig. 6c). Further-
more, the total area with a strong relationship between the PD and
PM2.5 pollution was 1.96� 105 km2, which occupied 4.04% of the
entire PM2.5-polluted area. These regions were mainly concen-
trated over an area of 9.87� 104 km2 in Xinjiang, occupying 49.74%
of the entire PM2.5-polluted area in Xinjiang.

The total area over which the ED displayed a significant corre-
lation with the PM2.5 pollution was 2.26� 106 km2, occupying
46.59% of the entire area of polluted regions in China (Fig. 7a,
Table 4). At the regional scale, NEC had the largest area
(5.00� 105 km2, accounting for 69.04% of the entire PM2.5-polluted
area in NEC), characterized by a significant correlation between the
ED and PM2.5 pollution (Fig. 7b). At the provincial scale, all of the
polluted regions in Beijing, Shanghai, and Hong Kong had signifi-
cant correlations between the ED and PM2.5 pollution (Fig. 7c). In
addition, the total area characterized by a strong relationship be-
tween the ED and PM2.5 pollution (local R2 above 0.5) was
1.89� 105 km2, occupying 3.89% of the total PM2.5-polluted area in
China. These regions were concentrated primarily in three prov-
inces, namely, Fujian, Chongqing and Guangdong, where the total
areas with strong relationships were 4.98� 104 km2,
2.60� 104 km2 and 4.86� 104 km2, respectively, occupying 40.98%,
31.59% and 27.45%, respectively, of the total PM2.5-polluted areas in
the corresponding provinces.

5. Discussion

5.1. The GWR model can accurately reveal the relationships
between the ULPs and PM2.5 pollution in China

Referring to the study by Wang et al. (2018), we selected the
adjusted R2 and the AICc to compare the goodness-of-fit among the
GWR, OLS, SLM and SEM models. The adjusted R2, which ranges
from 0 to 1, reflects the proportion of the total variation in the
dependent variable that can be explained by the independent
variable in the regression model; a higher adjusted R2 value in-
dicates a better fit. The AICc, another measure of the model's



Fig. 4. The urban landscape patterns in China in 2015.
(a) The spatial patterns of urban land. (b) The PLAND of urban land across each economic region. (c) The PD of urban land across each economic region. (d) The ED of urban land
across each economic region.
Note: The names of the economic regions are listed in Fig. 1.
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goodness-of-fit, is based on the concept of entropy; a smaller AICc
value indicates a better model performance (Clement et al., 2009;
Yu, 2006). We found that the adjusted R2 values of the GWRmodels
Table 3
The urban landscape patterns across the economic regions in 2015.

Average PLAND Average PD Average ED

(%) (num/km2) (m/ha)

ECC 6.09 0.003 0.53
SCC 4.67 0.0021 0.36
NCC 3.27 0.0021 0.3
MRYTR 2.51 0.0011 0.19
MRYLR 2.06 0.0016 0.21
NEC 1.82 0.0009 0.16
SWC 1.1 0.0008 0.12
NWC 0.47 0.0005 0.06
The whole country 2.28 0.0013 0.2
were obviously higher than those of the other three models
(Table 5). Moreover, the AICc values of the GWRmodels were lower
than those of the other models. Therefore, among the four models,
the GWR model was clearly best in terms of quantifying the re-
lationships between the ULPs and PM2.5 pollution in China.

In addition, referring to the study by Tu (2011), we compared the
abilities of the GWR and the OLS, SLM and SEM models to address
the spatial autocorrelation of variables by calculating the global
Moran's I of the residuals. We found that Moran's I for the OLS
models ranged from 0.74 to 0.77, with a significant spatial auto-
correlation (Table 5), whereas Moran's I for the SLM and SEM were
0.09 and 0.08, respectively, effectively removing the influence of
spatial autocorrelation on the results. The range of Moran's I for the
GWR models was 0.06e0.08, and the values in the GWR model
were much smaller than those in the OLS models and slightly
smaller than the values in SLM and SEM, demonstrating the spatial



Fig. 5. The relationships between PM2.5 pollution and PLAND in China.
(a) The spatial patterns of the relationships. (b) The percentage of the total area of counties with significant positive relationships across each economic region. (c) The percentage of
the total area of counties with significant positive relationships across each province.
Note: The names of the economic regions and provinces are listed in Fig. 1.
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Table 4
The relationships between the PM2.5 pollution and urban landscape patterns across the eight economic regions in China.

Regions PLAND PD ED

Area (104 km2) Percentage (%) Area (104 km2) Percentage (%) Area (104 km2) Percentage (%)

NEC 51.28 70.76 50.03 69.04 50.03 69.04
SCC 19.87 59.79 11.04 33.23 19.87 59.79
ECC 10.86 51.96 10.67 51.00 11.67 55.78
NWC 25.24 50.09 22.64 44.94 25.48 50.59
MRYLR 48.16 48.02 46.57 46.42 49.54 49.39
NCC 17.51 47.48 17.44 47.28 17.78 48.20
MRYTR 30.31 42.98 28.48 40.38 30.67 43.48
SWC 17.30 17.16 19.73 19.58 21.13 20.97
The whole country 220.53 45.43 206.60 42.55 226.16 46.59

Note: Area: The total area of counties with a significant positive correlation.
Percentage: The total area of counties with a significant positive correlation as a percentage of the polluted area in the corresponding region.
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randomness of the residuals (Anselin, 1995). Therefore, the GWR
model effectively removed the influence attributable to the spatial
autocorrelation of the variables when analyzing the relationships
between the ULPs and PM2.5 pollution in China, indicating that the
GWR model was more reliable than the other three models.

Our findings agree with the results of previous studies. For
instance, Yu et al. (2013) found that the performance of the GWR
model was significantly better than that of the OLS model in terms
of quantifying the relationships between land use andwater quality
in Shenzhen. In addition, Li et al. (2017) found that the GWR model
was more reliable than the OLS model when evaluating the impact
of urbanization on the ULP in Beijing. Furthermore, Wang et al.
(2014) analyzed the spatial variability of China's carbon footprint
and found that the GWR model incorporated spatial elements into
the regression, significantly improving the validity and effective-
ness of the model.

5.2. There is a difference in the relationships between three urban
landscape metrics and PM2.5 pollution

There were obvious spatial differences in the relationships be-
tween PLAND, PD, ED and PM2.5 pollution. At the national scale, the
total areas with a significant correlation between the PLAND, PD,
ED and PM2.5 pollution was 2.21� 106 km2, 2.07� 106 km2 and
2.26� 106 km2, respectively, accounting for 45.43%, 42.55% and
46.59%, respectively, of the entire polluted area in China (Fig. 8a).
Among them, the total areas with strong relationships between PD/
ED and PM2.5 pollution were 1.96� 105 km2 and 1.89� 105 km2,
respectively, accounting for 4.04% and 3.89%, respectively, of the
entire PM2.5-polluted area. In contrast, the total area with a strong
relationship between PLAND and PM2.5 pollution occupied less
than 2% of the PM2.5-polluted area. At the regional level, the effects
of the PLAND and ED on PM2.5 pollution were mainly concentrated
in SCC, while the relationships between the PD and PM2.5 pollution
were closer in NWC. (Fig. 8b). The total areas characterized by a
strong relationship between the PLAND/ED and PM2.5 pollution
were 8.15� 104 km2 and 9.84� 104 km2, respectively, accounting
for 24.53% and 29.60%, respectively, of the total PM2.5-polluted area
in SCC. In NWC, the area of PD closely related to PM2.5 pollutionwas
10.01� 104 km2, which accounted for 19.86% of the total polluted
area. Focusing on the provinces in SCC and NWC, we found that the
PLAND, PD and ED in Fujian Province all contributed significantly to
PM2.5 pollution, and the area with local R2 above 0.5 accounted for
more than 20% of the total polluted area (Fig. 8c). There was a
strong relationship between the PM2.5 pollution and the PLAND/ED
in Guangdong Province, while there was a strong relationship be-
tween the PD and PM2.5 pollution in Xinjiang Province.

The causes of the differences may come from heating and traffic
emissions. For NWC, the temperature in winter is extremely low,
and heating usually results in serious PM2.5 pollution (Huang et al.,
2012; Li et al., 2018a). Compared to compact urban forms, urban
landscape fragmentation with higher PD may lead to the lower
efficiency of energy use (Liu et al., 2018a); for example, it is difficult
to fully cover the central heating system. Traffic emissions repre-
sent the main contribution to PM2.5 pollution in SCC (Wu et al.,
2013). Exhaust emissions from private cars are closely related to
urban landscape shape (Zhou et al., 2018), and complex urban
landscape shapes (i.e., higher ED) will have more chaos and traffic
congestion, resulting in low-speed travel, longer driving times and
more PM2.5 pollutants (Bereitschaft and Debbage, 2013). Simulta-
neously, affected by topography and climatic conditions, the
transport of pollutants in Guangdong and Fujian may be exchanged
with the free atmosphere across the mixing layer and limit the
ability of the atmosphere to diffuse and transport pollutants (Li
et al., 2018b). In addition, a higher PLAND value indicates less
vegetation coverage and more impervious surfaces, which aggra-
vates the urban heat island and further hinders the diffusion of
atmospheric pollutants.

5.3. The ULPs in urban agglomerations (UAs) have a more
significant impact on PM2.5 pollution

In the past 10 years, China has promoted UAs as the main areas
in the implementation of the National New-type Urbanization Plan
(2014e2020), and thus, UAs have become the core zones in China's
future urban development (Fang, 2015). With the rapid socioeco-
nomic development in UAs, the urban landscape area continues to
increase, and the PM2.5 pollution is becoming increasingly serious
in these regions (Fang, 2015; He et al., 2017). Revealing the re-
lationships between ULPs and PM2.5 pollution in UAs is of great
significance for improving the sustainability of Chinese cities.
Therefore, we further analyzed the relationships between the ULPs
and PM2.5 pollution in 14 of China's major UAs, which were listed in
the study by Fang (2015).

We found that the relationships between the ULPs and PM2.5
pollution in the UAs in China were obviously stronger than the
relationship at the national level (Fig. 9a). The 14major UAswere all
located in PM2.5-polluted regions, with a total polluted area of
1.40� 106 km2. The total area with a significant correlation be-
tween the ULPs and PM2.5 pollution (i.e., at least one ULPmetric had
a significant correlation with PM2.5 pollution) was 9.20� 105 km2,
which accounted for 65.55% of the entire area of UAs in China. In
addition, this total area was nearly 14% higher than the national
average level. Eleven of the 14 UAs exhibited a significant correla-
tion between the ULPs and PM2.5 pollution over more than half of
the total agglomeration area. In particular, the entire area of the
Northern Tianshan Mountains (NTM) UA exhibited a significant
correlation between the ULPs and PM2.5 pollution therein. In four of



Fig. 6. The relationships between PM2.5 pollution and PD in China.
(a) The spatial patterns of the relationships. (b) The percentage of the total area of counties with significant positive relationships across each economic region. (c) The percentage of
the entire area of counties with significant positive relationships across each province.
Note: The names of the economic regions and provinces are listed in Fig. 1.
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Fig. 7. The relationships between PM2.5 pollution and ED in China.
(a) The spatial patterns of the relationships. (b) The percentage of the total area of counties with significant positive relationships across each economic region. (c) The percentage of
the total area of counties with significant positive relationships across each province.
Note: The names of the economic regions and provinces are listed in Fig. 1.
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Table 5
A comparison between the GWR model and the OLS/SLM/SEM model.

Indicators PLAND PD ED

Adjusted R2
O 0.045 0.064 0.062

Adjusted R2
SL 0.893 0.893 0.894

Adjusted R2
SE 0.897 0.897 0.898

Adjusted R2
G 0.969 0.966 0.970

AICcO �985.7 �1033.8 �1028.1
AICcSL �5492.3 �5481.3 �5514.7
AICcSE �5583.7 �5581.6 �5612.4
AICcG �8525.5 �8357.5 �8595.5
IO 0.771 0.745 0.763
ISL 0.094 0.092 0.092
ISE 0.084 0.083 0.083
IG 0.089 0.063 0.084

Note: Adjusted R2
O, Adjusted R2

SL, Adjusted R2
SE and Adjusted R2

G denote the adjusted R2 values of the OLS, SLM, SEM and GWR, respectively.
AICcO, AICcSL, AICcSE and AICcG denote the AICc values of the OLS, SLM, SEM and GWR, respectively. IO, ISL, ISE and IG denote Moran's I calculated for
the residuals from the OLS, SLM, SEM and GWR, respectively.
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the UAs, namely, Central and Southern Liaoning (CSLN), Pearl River
Delta (PRD), Guanzhong (GZH) and Western Taiwan Straits (WTS),
the ratios of the areas where the PM2.5 pollution was positively
correlated with the ULPs to the total areas of the corresponding UAs
ranged from 80% to 100%. Among the other four UAs, namely,
Beijing-Tianjin-Hebei (BTH), Yangtze River Delta (YRD), Central
Plains (CPL) and Chengdu-Chongqing (CDCQ), the proportions of
the areas with significant correlations between the ULPs and PM2.5
pollution among the total areas of the corresponding UAs ranged
from 60% to 80%. In two of the UAs, namely, Harbin-Changchun
(HBCC) and the Middle Yangtze (MYZ), the ratios of the areas
with significant correlations between the ULPs and PM2.5 pollution
to the total areas of the corresponding UAs ranged from 50% to 60%.

We also found that the PM2.5 pollution in UAs was jointly
influenced by the area, the magnitude of fragmentation and the
shape of the urban landscape (Fig. 9b). Among the 14 UAs, the total
area characterized by significant relationships between the PM2.5
pollution and all three landscape metrics was 6.46� 105 km2,
occupying 70.23% of the entire area that had a significant correla-
tion between the ULP and PM2.5 pollution. Twelve of the 14 UAs
were characterized by PM2.5 pollution that was jointly influenced
by the area, the magnitude of fragmentation and the shape of the
landscape over more than half of the total agglomeration area. In
particular, the entire NTM area displayed a significant correlation
between PM2.5 pollution and all three landscape metrics. In CSLN,
BTH and GZH, the ratios of the areas where the PM2.5 pollutionwas
jointly influenced by all three landscapemetrics to the total areas of
the corresponding UAs ranged from 80% to 100%, while the ratios in
eight other UAs, including YRD,WTS and HBCC, ranged from 50% to
80%.

Our findings agree with the results of previous studies. For
instance, Liu et al. (2017a) found that the areas with the most
serious PM2.5 pollution in China were concentrated mainly in UAs
with a high population density; additionally, urban built-up areas
had significant impacts on PM2.5 pollution. Furthermore, Du et al.
(2018) found that the urbanization in the BTH and in the YRD
and the PRD has had a significant impact on the PM2.5 pollution
therein. Additionally, Wang and Fang (2016) indicated that PM2.5
pollution in the CSLN, BTH, and SDP was significantly associated
with regional urbanization.

In 2014, the government of China began to implement the Na-
tional New-type Urbanization Plan (2014e2020) for the sustainable
development of cities. According to this plan, China's urbanization
level will reach 60% by 2020 (Bai et al., 2014), and UAs will
constitute the core areas of China's future urbanization. Therefore,
in the process of promoting new-type urbanization plans, we
suggest that it is necessary to focus on the impacts of ULPs on PM2.5
pollution in UAs, especially in NTM, CSLN, PRD, GZH and WTS. In
addition to strictly controlling the sprawl of urban land, it is
necessary to improve the urban form and optimize the urban layout
to reduce the impacts of ULPs on PM2.5 pollution.
5.4. Implications and future perspectives

In contrast with previous studies, our study fully considered the
spatial autocorrelation and spatial differences between variables
and improved the accuracy of measuring these relationships. We
not only revealed the impacts of urban forms on PM2.5 pollution but
also intuitively reflected the differences in the relationships be-
tween ULPs and PM2.5 pollution in different regions. Our study
showed that the GWR method could effectively reveal the spatial
relationships between ULPs and PM2.5 pollution in China. We also
found that there was significant spatial heterogeneity in the re-
lationships between ULPs and PM2.5 pollution in China. For
example, the effects of the PLAND and ED on the PM2.5 pollution
were mainly concentrated in SCC, while the relationship between
the PD and the PM2.5 pollutionwas closer in NWC. Therefore, in the
future, the government of China should focus on the effects of ur-
ban planning and construction on PM2.5 pollution. Both measures
of controlling urban land sprawl and improving the urban form
should be considered. For instance, the fragmentation of ULPs could
be avoided by optimizing the urban spatial layout, rationally
designing urban fringe, building a highly efficient urban road
network system, and reducing the emission of atmospheric pol-
lutants. In addition, the construction of urban interior space should
be improved, and elements such as urban open spaces, atmospheric
transport corridors and local diffusion conditions should be
considered in a coordinated way to promote the Prevention and
Control of Atmospheric Pollution.

This study does have some limitations. The spatial resolution of
the urban land data was relatively low. Hence, when using these
data, the urban patches with areas less than 1 km2 cannot be
identified, and thus, it is difficult to precisely analyze the ULP.
Meanwhile, the PM2.5 data used in this study were obtained by
satellite remote sensing technology, and although the data were
calibrated according to the monitoring data in the data processing,
the estimation of the PM2.5 concentration may still be lower than
the actual observed value (Jerrett et al., 2017). Moreover, we
analyzed only the statistical relationships between the ULPs and
PM2.5 pollution based on the GWR model, without revealing the
intrinsic mechanism causing the impacts of ULPs on PM2.5 pollution
(Jayarathne et al., 2014; Li et al., 2016; Liang and Keener, 2015).



Fig. 8. Differences in the relationships between PM2.5 pollution and three urban landscape metrics.
(a) The percentage of the total area of counties with significant positive relationships at the national scale. (b) The differences in the relationships at the regional scale. (c) The
differences in the relationships for the provinces in SCC and NWC.
Note: The names of the economic regions and provinces are listed in Fig. 1.
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Fig. 9. The relationship between the PM2.5 pollution and urban landscape patterns across the major urban agglomerations (UAs).
(a) The spatial patterns of the relationships between the PM2.5 pollution and urban landscape patterns in China. (b) The percentage of the area with a significant correlation between
the PM2.5 pollution and urban landscape patterns in each UA.
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In future studies, we will use new data with a finer spatial res-
olution to extract urban land (Zhang et al., 2013). At the same time,
we will utilize a process-based model (e.g., the regional multiscale
air quality model or positive matrix factorization) to reveal the
internal mechanism driving the impacts of ULPs on PM2.5 pollution
(Hou et al., 2015; Liu et al., 2017b).

6. Conclusions

The relationships between ULPs and PM2.5 pollution exhibited
obvious spatial heterogeneity. The areas with significant relation-
ships for ED-PM2.5, PLAND-PM2.5 and PD-PM2.5 were
2.26� 106 km2, 2.21� 106 km2 and 2.07� 106 km2, respectively,
occupying 46.59% 45.43% and 42.55%, respectively, of the total area
of PM2.5 polluted regions in China. The relationships for ED-PM2.5
and PLAND-PM2.5 were the strongest in Fujian and Guangdong,
while the relationship between the PD and PM2.5 pollution was the
strongest in Xinjiang.

The relationships between the ULPs and PM2.5 pollution in UAs
were obviously stronger than the relationships at the national level.
The area with a significant correlation between the ULPs and PM2.5
pollution was 9.20� 105 km2, occupying 65.55% of the entire area
of UAs; in addition, this proportion was nearly 14% higher than the
national level. The relationship between the ULPs and PM2.5
pollution was the strongest in the NTM.

This study fully considered the spatial autocorrelation and
spatial differences between variables using the GWR model, clari-
fied the spatial heterogeneity of the relationships between ULPs
and PM2.5 pollution, and provided reliable information for sup-
porting sustainable urban landscape planning in China. We
consequently suggest that the Chinese Government should
consider the spatial characteristics of the relationships between
ULPs and PM2.5 pollution in different regions and focus on the ULPs
in the UAs, particularly those in five UAs, including the NTM, the
CSLN and the PRD, during the promotion of new-type urbanization
plans. Controlling urban land sprawl and improving the urban form
should help reduce the impacts of ULPs on PM2.5 pollution and
improve urban sustainability in China.
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