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The lack of high resolution precipitation data has posed great challenges to the study and management of
extreme rainfall events. Satellite-based rainfall products with large areal coverage provide a potential
alternative source of data where in situ measurements are not available. However, the mismatch in scale
between these products and model requirements has limited their application and demonstrates that
satellite data must be downscaled before being used. This study developed a statistical spatial downscal-
ing scheme based on the relationships between precipitation and related environmental factors such as
local topography and pre-storm meteorological conditions. The method was applied to disaggregate the
Tropical Rainfall Measuring Mission (TRMM) 3B42 products, which have a resolution of 0.25� � 0.25�, to
1 � 1 km gridded rainfall fields. The TRMM datasets in accord with six rainstorm events in the Xiao River
basin were used to validate the effectiveness of this approach. The downscaled precipitation data were
compared with ground observations and exhibited good agreement with r2 values ranging from 0.612
to 0.838. In addition, the proposed approach provided better results than the conventional spline and kri-
ging interpolation methods, indicating its promise in the management of extreme rainfall events. The
uncertainties in the final results and the implications for further study were discussed, and the needs
for additional rigorous investigations of the rainfall physical process prior to institutionalizing the use
of satellite data were highlighted.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction satellite-based precipitation products have been developed glob-
Extreme rainfall events are of increasing concern to both the
scientific and management communities [1,2] because of the ob-
served and projected higher frequency of such events [3,4] and
the occurrence of several disastrous floods in Asia and Europe in
recent years [5]. In this context, linking atmospheric and surface
processes and assessing the impacts of extreme precipitation
events are critical steps toward effective risk reduction and climate
change adaptation.

However, ongoing research in this field is hindered by several
impediments. In addition to model deficiencies, the lack of high-
quality precipitation data is just as challenging [6]. Given the
small-scale variability of precipitation and the sparseness of obser-
vation networks, conventional in situ point measurements cannot
effectively reflect the spatial variability of precipitation and are
inherently weak in forcing hydrological models, which perform
better with areal precipitation [7]. In the past decades, several
ally, including the Global Precipitation Climatology Project [8],
the Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks [9] and the Tropical Rainfall
Measuring Mission [10]. These products provide a promising
alternative data source for hydrological applications with high
spatial–temporal resolution and large areal coverage [11].
However, the existing gap in scale between the relatively low spa-
tial resolution satellite precipitation data and the high resolution
required by hydrological models has limited the wide application
of these products [12]. Therefore, spatial downscaling of remote
sensing precipitation data is necessary before they are used to
investigate the hydrological response to extreme rainfall events.

In essence, spatial downscaling attempts to capture the sub-
grid heterogeneity while preserving the characteristics at the
original scale. The key concept is scale invariance or relating the
properties of the physical process at different scales [13]. Several
downscaling methods have been developed based on different
hypotheses and for various applications. One class of these ap-
proaches highlights the orographical effect on spatial variability
of rainfall and incorporates topographical features into the down-
scaling scheme or interpolation process. For example, Prudhomme
and Reed [14] developed a regression equation that relates the
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precipitation index to topographical variables and used it with the
modified residual kriging method to map extreme rainfall in
the mountainous region of Scotland. Jia et al. [15] downscaled
the TRMM 3B43 derived annual precipitation data to 1 � 1 km
fields in the Qaidam Basin of China based on the relationships
among precipitation, topography and vegetation. While the mech-
anism of the orographical effect is complex and depends on the
interaction between local topography and atmospheric flows
[16]; it requires careful examination and proper representation.
In addition, the topographical influence is static and not sufficient
to explain the spatial variation of precipitation. Another class of
downscaling approaches is based on the multi-scaling spectral
properties of rainfall fields assuming that the statistical character-
istics of the rainfall fields at different scales can be linked with a
parameter that is scale-invariant or has a specific structure related
to a physical variable governing the rainfall dynamics [17]. Typical
examples of these approaches include the Haar wavelet transform
methods [13,18,19] and the fractal and stochastic cascade-based
multifractal methods [20,21]. However, in the scaling-based ap-
proaches, the relationships between atmospheric dynamics and
precipitation statistics at all spatial scales are weak and implicit,
which limits their use in short duration storm prediction [22]. In
addition, the scaling properties exhibit strong geographical and
seasonal variability, which complicates the development of these
models [12].

The key questions in physical process-oriented downscaling
schemes are what the main factors that govern the spatial variabil-
ity of rainfall are and how this information can be used to capture
the sub-grid heterogeneity of precipitation. The orographical effect
is believed to be an important mechanism that controls the spatial
variability of precipitation in mountainous areas. Meanwhile, in
the case of convective systems, pre-storm meteorological condi-
tions such as temperature and humidity, also have large influences
on small-scale moisture content and the system stability [23] and
thus determine the intensity of local convective rains.

In this study, we developed a statistical downscaling method
that combines the orographical effect and pre-storm conditions
and disaggregated the TRMM 3B42 precipitation products to
1 � 1 km fields for six rainstorm events in a medium-size basin
in China. First, the relationships among precipitation, topographi-
cal factors and pre-storm conditions were examined, and a multi-
variate regression model was established at the original scale. The
model was then transferred to the target scale and combined with
the stochastically interpolated residuals to derive the precipitation
field at the desired resolution. Finally, the results were validated
and discussed for future research.
2. Methodology

2.1. Study area

The study area is the Xiao River basin, which is a medium-size
catchment with a total area of 12,099 km2 and located in the south-
east part of Hunan Province in central and southern China (see
Fig. 1). The Xiao River originates in the mountainous area in the
southeast part of the basin and runs from southeast to northwest
into the upper reaches of the Xiangjiang River, a tributary of the
Yangtze River. Hilly areas make up 49.45% of the total land area in
the Xiao River basin, and the elevations range from 88 to 1980 m.
High mountains are located in the middle and southern areas, and
relatively flat valleys lie between the mountains. The annual precip-
itation of the Xiao River basin varies from 1200 to 1900 mm and de-
creases from south to north and from the mountainous areas to the
plains. Influenced by the East Asia Monsoon, water vapor mainly
comes from the sea to the southeast, and precipitation is
concentrated in the summer and autumn. The complex topography
and the vapor-rich synoptic system (monsoon and occasional ty-
phoons) lead to frequent extreme rainfall events and make the area
prone to floods (especially flash floods in mountainous area) that
cause economic loss of several million RMB every year.

2.2. Datasets

The satellite-based precipitation data used in this study are
from the Tropical Rainfall Measuring Mission (TRMM), a joint pro-
ject launched by NASA and the Japanese space agency JAXA. TRMM
carries several precipitation measuring instruments, such as the
Precipitation Radar (PR), the TRMM Microwave Imager (TMI) and
the Visible & Infrared Scanner (VIRS). The information from these
instruments is processed with retrieval algorithms to generate pre-
cipitation estimates at a quasi-global scale [10]. TRMM provides a
range of products with different processing algorithms among
which the 3-hourly 3B42 V7 dataset with a spatial resolution of
0.25� was used in this study. The dataset is a multi-satellite precip-
itation product that is calibrated with the TRMM Combined Instru-
ment (TCI) estimates and gauge data provided by the Global
Precipitation Climatological Center and the Climate Assessment
and Monitoring System. Six rainstorm events were selected in this
study (see Table 1). Consecutive files of the original 3-hourly 3B42
data corresponding to each rainstorm event were accumulated to
obtain the event-based precipitation data.

The Digital Elevation Model (DEM) data are obtained from the
Shuttle Radar Topography Mission (SRTM) project, which is spon-
sored by the National Geospatial-Intelligence Agency (NGA) and
NASA. Launched on February 2000, the SRTM provides digital topo-
graphical data with spatial coverage of 56�S to 60�N and a resolu-
tion of 1 arc second (approximately 30 m). While the 1 s data are
released for the United States only, the composite 3-arc-second
data are available for other regions and were therefore used in this
study (http://srtm.csi.cgiar.org/).

The meteorological data are collected from the local meteoro-
logical agency and include precipitation, pre-storm maximum
temperature and humidity from eight local meteorological stations
(see Fig. 1). The TRMM 3B42 data were firstly calibrated with the
ground-observed precipitation from the available stations. As in
Sawunyama [24] and Jia et al. [15], the non-linear optimized rela-
tion between the data from these two sources was examined, and a
power function was employed to correct the satellite-based precip-
itation data for each event. Table 1 shows the calibration results.

2.3. Method

The method used in this study is based on the assumption that
the spatial variability of precipitation is well captured by the TRMM
products and can be explained by local topography and the pre-
storm meteorological conditions. Antecedent maximum tempera-
ture and average humidity are the two primary indices for
pre-storm conditions and are obtained through the interpolation
of ground-based observations across various scales. The orographi-
cal effect can be represented in three different factors: the elevation
of the target pixel, the angle between the slope aspect and the pre-
vailing wind direction, and the topographical roughness in the
direction of the dominant airflow. The variable of topographical
roughness was adopted from Prudhomme [25] and calculated as
the weighted average of ups and downs in elevation from the
current pixel to the border of the study area in the direction of
dominant airflow. The formula for topographical roughness is as
follows:

updowni ¼
PN

t¼1distðN�tþ1Þ � elev diftPN
t¼1distt

ð1Þ

http://srtm.csi.cgiar.org/


Fig. 1. The location and topography of the Xiao River basin.

Table 1
The six selected rainstorm events and their calibration.

ID Date Spatial maximum
precipitation (mm)

Spatial average
precipitation (mm)

Coefficient of
variation

Calibration
R-square

Calibration
RMSE

e1 2001/6/11–2001/6/13 218.16 126.38 0.417 0.827 63.796
e2 2002/5/8–2002/5/9 132.20 57.66 0.427 0.646 31.309
e3 2002/5/14–2002/5/14 99.25 53.42 0.366 0.655 16.580
e4 2006/5/25–2006/5/26 137.83 73.12 0.419 0.519 51.975
e5 2006/7/15–2006/7/16 181.82 152.25 0.113 0.319 38.207
e6 2010/6/1–2010/6/2 74.33 59.43 0.216 0.591 34.815

44 J. Fang et al. / Advances in Water Resources 61 (2013) 42–50
roughness ¼
P9

i¼1 cos ai � updowniP9
i¼1 cos ai

ð2Þ

where updowni denotes the elevation ups and downs in sub-
direction i; there are nine sub-directions centered at the prevailing
wind direction; distt is the distance from the current operating pixel
to pixel t in the given sub-direction; elev_dift denotes the absolute
difference in elevation between pixel t and pixel (t + 1); N is the
number of pixels in each sub-direction; and ai is the angle between
sub-direction i and the prevailing wind direction.

As described in Fig. 2, the relationships among precipitation, the
topographical factors and the pre-storm meteorological conditions
for each event were first examined at the original scale of 0.25�,
and a multivariate linear regression model was constructed. The
residuals were then calculated as the differences between the ori-
ginal TRMM 3B42 data and predicted values from the model. The
residuals are interpreted as the natural random variations of pre-
cipitation that are not represented by the model and were interpo-
lated to a 1 km resolution using the spline interpolator. The
predicted values of precipitation at the target scale of 1 km were
then calculated using the previously constructed regression model
and detailed information of the explanatory variables. Finally, the
downscaling result was obtained by combining the interpolated
residuals and the predicted precipitation.

To validate the downscaling approach, the results were com-
pared with the observations from the eight raingauge stations.
Conventional spline and kriging interpolation methods were also
implemented to provide a comparison with the proposed ap-
proach. Three indices were chosen as comparison criteria: the coef-
ficient of determination (r2), the bias (B) and the root mean square
error (RMSE). The latter two indices are calculated as follows:

B ¼
Pn

i¼1pmiPn
i¼1poi

� 1 ð3Þ
RMSE ¼
Xn

i¼1

ðpmi � poiÞ
2

 ,
n

!1=2

ð4Þ

where n is the total number of stations; i is the index of the station;
pmi is the model downscaled precipitation of station i; and poi is the
observed precipitation of station i.



Fig. 2. Schematic overview of the downscaling method. Note: LR represents low
resolution and refers to a resolution of 0.25� � 0.25�, while HR represents high
resolution and refers to the 1 � 1 km resolution in this study.
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3. Results

3.1. Univariate regression analysis

To investigate the impacts of topographical and meteorologi-
cal factors on the spatial variability of severe convective rainfall,
the relationships between precipitation and the explanatory
variables were first examined individually through univariate
regression analysis at the solved scale of 0.25�. The original
90 m-resolution DEM data were upscaled to 0.25� and then used
to calculate the topographical variables of elevation, slope aspect
and topographical roughness for each pixel. The meteorological
variables of pre-storm temperature and humidity at the 0.25�
resolution were obtained through spatial interpolation of the
ground-observed data.
Table 2
The results of regression analysis between precipitation and explanatory topographical an

Event Variable (acronym) r2

e1 aspect_catg (ASC) 0.001
aspect_angle (ASA) 0.021
Roughness (RGH) 0.060
Elevation (ELE) 0.008
Temperature (TEM) 0.191⁄⁄

Humidity (HUM) 0.716⁄⁄

Multivariate 0.841⁄⁄

e2 aspect_catg (ASC) 0.000
aspect_angle (ASA) 0.136⁄⁄

Roughness (RGH) 0.098⁄

Elevation (ELE) 0.025
Temperature (TEM) 0.440⁄⁄

Humidity (HUM) 0.009
Multivariate 0.715⁄⁄

e3 aspect_catg (ASC) 0.001
aspect_angle (ASA) 0.292⁄⁄

Roughness (RGH) 0.099⁄

Elevation (ELE) 0.011
Temperature (TEM) 0.105⁄

Humidity (HUM) 0.328⁄⁄

Multivariate 0.483⁄⁄

Note: ⁄ indicates significance at a level of p < 0.1; ⁄⁄ indicates significance at a level of p <
each event.
The results are presented in Table 2 and show the percentage of
variance in precipitation that is explained by each variable (r2).
Overall, the pre-storm meteorological variables had greater effects
than the topographical variables. The coefficients of determination
(r2) of the meteorological variables varied from 0.716 to 0.003, and
almost all were significant at the level of p < 0.1, while the highest
r2 value of the topographical variables was 0.292, and many did not
pass the significance test. Specifically, among the topographical
variables, the angle between slope aspect and the prevailing wind
direction (aspect_angle) gave better results than the single aspect
variable (aspect_catg). Higher r2 values were found for the aspect
angle variable in four of the six events; the remaining two were
not significant at the p < 0.1 level, and the r2 values were so low
that both of the variables can be ignored in explaining the varia-
tions of precipitation. Similar results were also found for the vari-
ables of topographical roughness and pixel elevation. The variance
in precipitation explained by topographical roughness was at least
165% greater than that explained by the elevation.

3.2. Multivariate regression analysis

A multivariate regression analysis with all of the significant
variables was carried out for each event to find the best-fitting
relationship between precipitation and the local environmental
factors. As shown in Section 3.1, the angle between slope aspect
and wind direction performed better than only the aspect in
explaining the variation of precipitation; thus it would replace
the slope aspect variable in the multivariate regression model.
With regard to elevation-related variables, although topographical
roughness explained more than the pixel elevation, both of them
were incorporated into the model because they reflect the influ-
ences of elevation on precipitation from different perspectives.
All five variables (elevation, aspect angle, roughness, temperature
and humidity) were included in the model in the initial step to en-
sure that all of the valuable information would be retained. The
variables that failed to pass the significance test (at the p < 0.05 le-
vel) were then rejected, and the final regression model for each
event was constructed.

Based on the regression models, the predicted precipitation
was calculated and compared with the calibrated TRMM
data at the 0.25� resolution. Fig. 3 shows the results of the
d meteorological variables for the six events.

Event Variable (acronym) r2

e4 aspect_catg (ASC) 0.049
aspect_angle (ASA) 0.047
Roughness (RGH) 0.045
Elevation (ELE) 0.017
Temperature (TEM) 0.054
Humidity (HUM) 0.306⁄⁄

Multivariate 0.762⁄⁄

e5 aspect_catg (ASC) 0.011
aspect_angle (ASA) 0.079
Roughness (RGH) 0.175⁄⁄

Elevation (ELE) 0.016
Temperature (TEM) 0.003
Humidity (HUM) 0.644⁄⁄

Multivariate 0.742⁄⁄

e6 aspect_catg (ASC) 0.007
aspect_angle (ASA) 0.004
Roughness (RGH) 0.070
Elevation (ELE) 0.001
Temperature (TEM) 0.080⁄

Humidity (HUM) 0.034
Multivariate 0.612⁄⁄

0.05; the italic bold variables are selected in the multivariate regression model for



46 J. Fang et al. / Advances in Water Resources 61 (2013) 42–50
multivariate regression models and scatter diagrams of the com-
parisons. All of the six models passed the significance test
(p < 0.05) with r2 values ranging from 0.483 to 0.841. The best
fit was found in event e1, while event e3 was the least optimum.
The model form and variables included in each model varied
markedly among the different events. In event e3, only two of
the five variables (aspect angle and humidity) were selected
based on the significance test, while three or four variables could
be used for the other five events. The significant differences
among these models imply the complex dynamics of heavy
rainfall events; different factors may interact with each other
and contribute to the formation of intensive precipitation in
Fig. 3. Regression models and comparisons between predictive pre
complicated ways. In addition, temperature or humidity was
used for events e2 and e3, respectively, and both of them were
used for events e1, e4, e5 and e6. This supported the finding
from Section 3.1 that the pre-storm meteorological conditions
are more important than the influence of topography.

In most of the events, precipitation increased with elevation,
temperature and humidity, which was manifested in events e5
and e6, while it decreased with aspect angle and topographical
roughness, which was shown in events e2, e3 and events e5, e6,
respectively. It is notable that models for some of the events dis-
agreed with these findings, which reinforces the complex mecha-
nisms of heavy rainfall events.
cipitation and TRMM derived precipitation for the six events.
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3.3. Spatial downscaling process

This section uses event e1 as an example to illustrate the down-
scaling process. The 0.25� calibrated TRMM precipitation field is
shown in Fig. 4a and indicates that precipitation in the south and
southeast is much higher than that in the north, especially in the
northwest part of the study area. Based on the multivariate
Fig. 4. Downscaling process for e1: (a) the calibrated TRMM 3B42 precipitation at 0.25�
residuals at 1 km resolution; (d) the final downscaled result of precipitation at 1 km res
regression model constructed at the 0.25� resolution and using
the topographical and meteorological variables at the 1 km resolu-
tion, the 1 km precipitation was estimated by assuming that the
same responses existed at the high resolution. Fig. 4b shows the re-
sults of the 1 km predicted precipitation. A similar pattern can be
found with the 0.25� calibrated TRMM precipitation. The 0.25�
predicted precipitation was subtracted from the original data to
resolution; (b) the predictive precipitation at 1 km resolution; (c) the interpolated
olution.



Table 3
Validation of the downscaled results and the original TRMM 3B42 data for the six events.

Event Coefficient of determination (r2) RMSE Bias

Original Downscaled Original Downscaled Original Downscaled

e1 0.7841 0.6680 63.7959 22.5505 �0.5973 �0.0314
e2 0.8735 0.8377 31.3094 15.3615 �0.4564 �0.1248
e3 0.5510 0.0443 16.5801 13.9196 0.2527 �0.0924
e4 0.3714 0.6984 51.9747 29.1682 0.5360 �0.2415
e5 0.4238 0.6122 38.2072 21.7870 �0.1275 0.0519
e6 0.4953 0.6301 34.8153 17.1373 �0.4772 0.0037

Table 4
Cross validation for conventional spline and kriging interpolation methods.

Event Coefficient of determination (r2) RMSE Bias

Spline Kriging Spline Kriging Spline Kriging

e1 0.0790 0.0008 37.1831 39.5013 0.0654 0.0058
e2 0.1289 5.46E�05 31.6404 36.0122 �0.0744 0.0074
e3 0.3599 0.6639 19.0172 15.9461 0.0480 �0.0190
e4 0.3429 0.1545 35.7454 41.2124 �0.0233 0.0916
e5 0.0451 0.1540 45.1604 37.3523 0.0908 0.0026
e6 0.1354 0.5178 40.0527 34.0333 0.0686 �0.0225
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obtain the residuals, which were subsequently interpolated to
1 km resolution using the spline interpolating approach. Some
other interpolation methods such as IDW and kriging were also
tried and little change in the final results could be observed with
average relative change equaled to 4.84%, indicating weak sensitiv-
ity of final results on residuals. The interpolated result is shown in
Fig. 4c with positive deviations in the outer part of the study area
and negative biases in the interior. The final downscaled precipita-
tion was produced by adding the interpolated residuals to the 1 km
predicted precipitation obtained above. The final results of the
downscaled precipitation field (Fig. 4d) resembled the original pre-
cipitation field (Fig. 4a); both showed decreasing precipitation
from the southeast to the northwest. The result captured the spa-
tial pattern of the original precipitation field well and restored it at
a higher resolution.

3.4. Validation

The validation processes used to evaluate the efficiency of the
proposed downscaling approach were all based on the comparison
with ground-observed records using three criteria: the coefficient
of determination (r2), the root mean square error (RMSE) and the
bias. Firstly, the final precipitation at the locations of the eight
raingauge stations were extracted from the downscaled fields
and compared with the station observations. Except for event e3,
the downscaled results were characterized with r2 values exceed-
ing 0.6, indicating good agreement with the observed precipitation
(Table 3). The RMSE values varied from 13.92 to 29.17 and were
generally lower than one third of the mean precipitation for each
event. The biases for four events (e1, e2, e3, e4) were less than 0,
indicating underestimation of the precipitation, while precipita-
tion were overestimated (positive biases) in events e5 and e6.
The tendency of underestimation is related to the geographical
location of the raingauge stations, which generally lie in the flat
low lands at lower than average elevations.

It is notable that a better regression model does not necessarily
give better downscaled results. The model fitting r2 of event e1
(0.841) was the highest among the six events, while the validation
r2 ranked third (0.668); the validation r2 of event e2 was the high-
est even though the model fitting r2 was second lowest.

The original TRMM 3B42 precipitation data were also validated
using the same procedure to provide a comparison with the
downscaled results. The validation statistics are listed in Table 3
and show that the downscaling approach greatly increased the r2

values by 88.1%, 44.5% and 27.2% for events e4, e5 and e6, respec-
tively. For events e1and e2, the r2 values of the downscaled precip-
itation decreased slightly but were still at an acceptable level. More
importantly, the RMSE and biases for all six events were efficiently
reduced after the downscaling process. The RMSE values decreased
by 16–64%, and the biases decreased by 54–99%, indicating that
both the absolute and relative errors were greatly reduced after
being downscaled.

To further evaluate the efficiency of the downscaling approach,
it was compared with the conventional spline and kriging interpo-
lation methods. Cross validation of the directly interpolated pre-
cipitation fields were conducted, and the results are summarized
in Table 4. Except for event e3, the downscaling approach gives
better results than the conventional interpolation methods, with
several times higher r2 values and much lower RMSE values.
4. Conclusion and discussion

This study developed a new downscaling approach based on the
effects of local environmental factors on the spatial distribution of
precipitation. The orographical effect and pre-storm meteorologi-
cal conditions were examined, and their relationships with precip-
itation were used in the downscaling scheme. The approach was
applied to disaggregate the original 0.25� � 0.25� resolution TRMM
3B42 precipitation data to 1 � 1 km resolution for six rainstorm
events in the Xiao River basin. The validation results show that this
approach effectively represents the spatial pattern of the precipita-
tion fields and preserves the rainfall intensity observed at the
raingauge stations. It provides high resolution precipitation fields
and improves the accuracy of the original TRMM data at the same
time. This approach also provides better results than direct inter-
polation with conventional spline and kriging methods. The main
findings in this study and their implications are discussed below.

First, the investigation of the relationships between precipita-
tion and related environmental factors reveals that the pre-storm
meteorological conditions play a more important role than the
topographical variables in explaining the variation of precipitation
in short-term extreme rainfall events. The orographical effect can
dominate the accumulated precipitation over relatively long
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periods in the mountainous areas but may not in other cases. In
addition, the variables relating to the interactions between differ-
ent elements (for example, aspect angle and topographical rough-
ness) are more effective than variables that only consider
characteristics of the pixel (slope aspect and pixel elevation), indi-
cating the complex influence that topography may have on local
precipitation.

Second, precipitation generally increases with elevation and de-
creases with aspect angle due to the topographical lifting effect on
airflow, which could intensify the rainfall. Meanwhile, higher tem-
perature and humidity tend to cause more precipitation as a result
of more active convective systems and more moisture in the atmo-
sphere. The topographical roughness has a negative impact on pre-
cipitation because higher value of roughness indicates more
friction between the earth’s surface and airflow and higher con-
sumption of water vapor from the sea. However, the influence of
these environmental factors varied among the different events be-
cause each event was caused by distinct and complicated micro-
physical processes. The proposed approach considers the major
aspects of the rainfall formation mechanism but fails to take into
account the detailed micro-meteorological information due to data
limitations.

Third, among the six events, event e3 acted as an outlier and
had the poorest downscaling performance. Closer inspection of
event e3 revealed that it had different formation mechanism from
the other events. The other rainfall events were caused by strong
convective systems with water vapor coming from the southeast,
and precipitation tended to be more intense in the south (see
Fig. 5a). However, event e3 was controlled by an upper-level south-
ern branch trough and was affected by weak cold surface air, and
the rainfall was heavier in the northwest (see Fig. 5b). The distinct
mechanism of event e3 was responsible for the failure of the down-
scaling approach because the approach is designed for extreme
convective rainfall events in which the orographical effect and
pre-storm meteorological conditions play important roles. This
Fig. 5. Comparison of the original TRMM 3B42 pr
demonstrates the need for careful diagnosis of the micro-meteoro-
logical background before implementing the method. Further
study is required to extend the method to other types of rainfall
events.

Overall, two main sources concerning the imperfection of data
and model contribute to the notable uncertainties in the final re-
sults. Subject to the accuracy of the sensors and derivation algo-
rithms, currently available satellite-based precipitation products
do not match well with actual observations (see Table 3). TRMM
3B42 tends to underestimate the precipitation from low clouds
and high but relatively thin clouds that are at low temperatures
[26]. This factor accounts for the majority of the uncertainties in
the final results. However, the anticipated Global Precipitation
Measurement (GPM) mission [27] is designed to provide precipita-
tion data with high temporal/spatial resolution and reduced uncer-
tainty [28]. It is expected that the bias from the remote sensing
measurements of precipitation could greatly decrease in the future.

With regards to the downscaling model, the first important is-
sue is the scale-independent characteristic of the multivariate rela-
tionships between precipitation and environmental factors, which
lays the foundation of this study. It is reasonable to question this
assumption and ask a more profound investigation, because the
orographical effect in the model may vary among different scales,
providing detailed information or being smoothed with fine and
coarse resolution respectively. However, we believe that the differ-
ence in the multivariate relationships derived at different scales
may not be significant. Subject to the property of spatial autocorre-
lation, the orographical effect may not change too much when the
resolution range does not exceed a certain threshold in the down-
scaling process. Mass et al. reviewed and extended the study about
the benefits of increasing resolution in numerical weather forecast-
ing and concluded that decreasing resolution to less than
10–15 km generally improves the realism of the results but does
not necessarily significantly improve the accuracy of the forecasts
[29].We also have found some evidence from other studies that are
ecipitation field for events e1 (a) and e3 (b).
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supportive of our assumption [30,31]. Therefore it is appropriate to
assume the impacts of environmental factors on precipitation to be
stationary and establish the downscaling model.

In addition, as the interaction between airflow and topography
is implicit and hard to be fully quantified and the physical mecha-
nisms that govern the rainfall variability at different scales have
not been well investigated [22], the estimated multivariate regres-
sion relationships among precipitation, topography and meteoro-
logical conditions only reflect part of the environmental impacts
on precipitation and also cause some of the uncertainty. Future
studies should emphasize the microphysical processes of extreme
rainfall events with more rigorous assessments of the meteorolog-
ical conditions and their interaction with the surface and incorpo-
rate all of the important elements in the downscaling scheme.

Rainfall is a governing factor in the entire hydrologic cycle and
greatly influences runoff generation and soil moisture dynamics.
Accurate measurement of precipitation at fine spatial and temporal
scales is of key importance for the improvement of our ability to
simulate land surface hydrological processes and predict hydrome-
teorological hazards, such as floods and droughts. The proposed
downscaling approach is promising for applications of extreme
rainfall event management because it well captures the spatial var-
iation of precipitation and closes the gap in scale between satellite
precipitation data and model requirements. With improvement of
satellite-based precipitation products, more accurate precipitation
fields with high resolution can be expected from the downscaling
approach, and it will be useful in practical operational systems
for the assessment and prediction of extreme rainfall events.
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